
Dynamic Query Processingin aParallel Object-Oriented Database System

Promotie commissie:Prof. dr. P.M.G. Apers, promotorProf. dr. M.L. Kersten, co-promotorProf. dr. ir. N.J.I. Mars, secretarisDr. H.M. BlankenProf. dr. L.O. HertzbergerProf. dr. S.J. MullenderDr. P. Valduriez, INRIA-Rocqencourt

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAGvan den Berg, Carel ArieDynamic query processing in a parallel object-orienteddatabase system / Carel Arie van den Berg. - Amsterdam :Stichting Mathematisch Centrum. -Ill.Thesis Enschede. - With index, ref. - With summary inDutch.ISBN: 90-6196-434-2NUGI 852Subject headings: parallel database systems.Cover: (Man carrying a load up the mountain to �nd new horizons)

Dynamic Query Processingin aParallel Object-Oriented Database SystemPROEFSCHRIFTter verkrijging vande graad van doctor aan de Universiteit Twente,op gezag van de rector magni�cus,prof. dr. Th. J. A. Popma,volgens besluit van het College voor Promotiesin het openbaar te verdedigenop vrijdag 25 februari 1994 te 13.15doorCarel Arie van den Berggeboren op 14 augustus 1963te Bergen

Dit proefschrift is goedgekeurd door:Professor P.M.G. Apers, promotor.Professor M.L. Kersten, assistent-promotor.

Voor mijn Vader

DankwoordIk draag dit proefschrift op aan mijn vader die te vroeg gestorven is. Hij heeftbij mij al op jonge leeftijd mijn interesse gewekt voor de wetenschap en is doorde jaren heen mijn voorbeeld geweest. Ik wil bij deze ook stilstaan bij de in-spanningen die mijn moeder zich voor het gezin getroost heeft.Drie jaar geleden na het a
open van het PRISMA project begon ik met het indit proefschrift beschreven onderzoek. Na ruim twee jaar had ik nog een langeweg te gaan om de resultaten op schrift te stellen. Hoewel dit voornamelijk eensolistische onderneming is had ik het niet kunnen volbrengen zonder de directeof indirecte hulp van velen. Ik dank hun allen voor hun bijdrage. De bijdragevan een aantal van hen wil ik hier speciaal noemen.Na mijn afstuderen namMartin Kersten mij aan bij het CWI voor het PRISMA-project. Hij heeft vanaf het begin zijn vertrouwen in mij getoond en is al diejaren nauw betrokken geweest bij mijn onderzoek. Verder zijn onze discussiesvoor mij een bron van inspiratie geweest.De brede opzet van het PRISMA project was een unieke gelegenheid om mijnkennis van vele deelgebieden van de informatica te verdiepen, vooral op hetgebied van parallelle database systemen. Ik heb met veel genoegen samengewerktmet de leden van de PRISMA-groep. Ik wil met name Peter Apers, Jan Flokstra,Paul Grefen, Maurice Houtsma, Erik van Kuijk, Rob van de Weg en AnnitaWilschut van de PRISMA/DB groep van de Universiteit Twente noemen.In 1990 heb ik samen met Satish Shair-Ali op het Philips Natlab de eersteexperimenten verricht met dynamische query verwerking op de PRISMA ma-chine. De samenwerking met Satish was bijzonder prettig en de resultaten warendoorslaggevend voor de keuze van mijn promotie onderwerp.I thank Patrick Valduriez for agreeing to be a member of my thesis committeeand for taking the trouble to travel from Paris to participate in my thesis defense.Furthermore, I would like to thank Cesar Galindo for his comments on themanuscript.Ik bedank de leden van de CWI database groep voor hun reacties en op-bouwende kritiek op het onderzoek. Mijn vrienden hebben mij in deze drukketijd geholpen door mij op gezette tijden van mijn werk los te rukken.
vi

viiDe bijdrage van jou, Sita, is niet in woorden uit te drukken. Je hebt mijtelkens weer aangespoord om het proefschrift af te ronden wanneer ik in de ver-leiding kwam om het onderzoek verder uit te breiden. Ik dank je voor je liefde,geduld en voor de vele dingen die ik van je leer die de wetenschap ontstijgen.Carel van den Berg, 11 januari 1994

Contents
1 Introduction 11.1 Issues in parallel query processing : : : : : : : : : : : : : : : : : 21.1.1 Parallel query execution : : : : : : : : : : : : : : : : : : : 31.1.2 Query processing overview : : : : : : : : : : : : : : : : : : 41.1.3 Research problem and objectives : : : : : : : : : : : : : : 61.2 Thesis outline : 72 The Goblin OODBMS 92.1 Introduction : 92.2 The application domain : 102.2.1 The impedance mismatch : : : : : : : : : : : : : : : : : : 102.2.2 Extensibility : 112.3 Software engineering : 112.3.1 Language design : 112.4 Technological trends : 122.4.1 Multiprocessor systems : : : : : : : : : : : : : : : : : : : 122.4.2 Main memory : 122.4.3 Physical design : 122.4.4 Operating systems : 132.5 Conclusion : 133 The Goblin Query Language 153.1 Introduction : 153.2 Object-oriented data-base concepts : : : : : : : : : : : : : : : : 153.2.1 Complex objects : 163.2.2 Classes : 163.2.3 Inheritance and class hierarchy : : : : : : : : : : : : : : : 173.2.4 Objects versus values : 183.3 Language overview : 193.3.1 Types and subtypes : 193.3.2 Class and subclass : 203.3.3 Derived classes : 223.3.4 Functions and methods : : : : : : : : : : : : : : : : : : : 233.3.5 Statements and expressions : : : : : : : : : : : : : : : : : 24viii

CONTENTS ix3.3.6 Objects and class extents : : : : : : : : : : : : : : : : : : 253.3.7 Application interface : 253.4 Conclusion : 264 The Goblin storage model 274.1 Introduction : 274.2 Object representation issues : 274.2.1 Clustering and declustering : : : : : : : : : : : : : : : : : 294.2.2 Object sharing : 304.2.3 Object dynamicity : 304.2.4 Data-base workload : 314.3 Object storage models : 324.3.1 Flattened Storage Model : : : : : : : : : : : : : : : : : : : 324.3.2 Normalized Storage Model : : : : : : : : : : : : : : : : : : 344.3.3 Decomposed Storage Model : : : : : : : : : : : : : : : : : 354.3.4 Other storage models : 374.3.5 Storage model comparison : : : : : : : : : : : : : : : : : : 374.4 Goblin storage model : 384.4.1 Storage model overview : : : : : : : : : : : : : : : : : : : 394.4.2 The schema layer : 394.4.3 The summary layer : 404.4.4 Range partitioning : 434.4.5 Hash partitioning : 444.4.6 The data layer : 444.4.7 The storage layer : 474.5 Conclusion : 505 Dynamic Query Processing 515.1 Introduction : 515.2 Query evaluation strategies : 525.2.1 The query step approach : : : : : : : : : : : : : : : : : : 535.2.2 The data step approach : : : : : : : : : : : : : : : : : : : 545.2.3 Query restart : 555.3 The Goblin approach : 565.4 Related work : 565.4.1 Query optimization : 575.4.2 Load balancing : 575.5 Conclusion : 586 The Goblin Query Processing Scheme 596.1 Introduction : 596.2 The Goblin architecture : 606.2.1 Bu�er Manager : 606.2.2 Query Processor : 626.2.3 Query Scheduler : 626.3 Query processing overview : 646.3.1 The derived class : 656.3.2 Query translation : 67

x CONTENTS6.3.3 The query graph : 686.3.4 Query graph construction : : : : : : : : : : : : : : : : : : 696.4 Conclusion : 717 Task generation 727.1 Introduction : 727.2 Notation and terminology : 737.3 Query graph initialization : 747.4 The Chinese Postman Problem : : : : : : : : : : : : : : : : : : : 757.5 Batch task generation : 787.6 Navigational task generation : 827.7 Conclusion : 848 Task elimination 868.1 Introduction : 868.2 Relational algebra properties : 888.2.1 Commutative operations : : : : : : : : : : : : : : : : : : : 888.2.2 Associative operations : 898.2.3 Distributive operations : 898.2.4 Projection and selection : : : : : : : : : : : : : : : : : : : 908.2.5 Semantic properties : 908.3 Task elimination : 918.4 Multiple join evaluation : 958.5 Multiple join processing cost : 978.6 Conclusion : 1009 Task allocation 1019.1 Introduction : 1019.2 The I/O bottleneck : 1029.3 Bu�er management : 1039.3.1 Optimal bu�er management : : : : : : : : : : : : : : : : : 1049.4 Bu�er replacement techniques : 1079.4.1 Random replacement : 1079.4.2 LRU replacement : 1079.4.3 Maximum Cache Volume replacement : : : : : : : : : : : 1089.5 Task allocation : 1089.5.1 Random allocation : 1099.5.2 Sequential allocation : 1099.5.3 Maximum Cache Hit allocation : : : : : : : : : : : : : : : 1099.6 Performance comparison : 1109.6.1 Cache miss per task ratio : : : : : : : : : : : : : : : : : : 1109.6.2 Task allocation and bu�er replacement overhead : : : : : 1119.7 Conclusion : 114

CONTENTS xi10 Task evaluation 11510.1 Introduction : 11510.2 The Wong-Yousse� algorithm : 11610.3 Goblin task evaluation issues : 11810.3.1 Cost based versus heuristic : : : : : : : : : : : : : : : : : 11810.3.2 Query result representation : : : : : : : : : : : : : : : : : 11810.3.3 Reuse of intermediate results : : : : : : : : : : : : : : : : 11810.4 Notation and terminology : 11910.5 Graph initialization : 12010.6 Graph reduction : 12010.6.1 Selection : 12110.6.2 Theta-join : 12310.6.3 Equi-join : 12510.7 A sample task execution : 12710.8 Target edge selection : 13010.8.1 Selection : 13110.8.2 Theta-join : 13110.8.3 Equi-join : 13210.8.4 Semi-join : 13210.9 Optimization issues : 13310.10Conclusion : 13311 Goblin evaluation 13511.1 Introduction : 13511.2 The Goblin kernel : 13611.2.1 Communication : 13611.2.2 Processing : 13711.2.3 The join and semi-join operation : : : : : : : : : : : : : : 13711.2.4 The select operation : 13811.2.5 The partition operation : : : : : : : : : : : : : : : : : : : 14111.3 Query processing : 14111.3.1 Task generation : 14311.3.2 Task evaluation : 14411.3.3 Partitioning overhead : 14711.3.4 Combining the results : 14811.4 The Wisconsin benchmark : 14911.5 Conclusion : 15212 Summary and Future Research 15412.1 Introduction : 15412.2 The main contributions : 15512.2.1 The Goblin storage architecture : : : : : : : : : : : : : : : 15512.2.2 Dynamic query processing architecture : : : : : : : : : : 15612.3 Future research : 158

xii CONTENTSBibliography 159Index 164Samenvatting 171Curriculum Vitae 173

Chapter 1Introduction
Timely information has become increasingly important for today's competitivebusinesses. Furthermore, it has proven to be a valuable commodity. The numberof information services or business relying on timely information is growing fast.It is reported that the data volume is increasing by 25-35% per year, whileat the same time the amount of data stored per person is increasing[Gro90].Moreover, the massive amount of data is not only used for simple data intensiveapplications, but it is also used to extract information by relating the data stored.This leads to an increase in query complexity and data complexity.These demands foreseen cannot be easily met using traditional disk- baseddata-base technology, because the I/O bottleneck forms a physical limitation toimprove responsiveness. Disk technology has shown an improvement of only afactor 2 over the last 10 years in response time and throughput. It is unlikelythat this will change dramatically in the near future, because the rotationalspeed of a disk meets its physical limit.In contrast the CPU speed has been doubling every year. Furthermore, thebreak-even point for storage cost for main-memory compared to disk is expectedto be reached within the next two decades [Gib91]. The in
uence of new solid-state memory technology, e.g.
ash memory, could lead to an earlier transitionfrom disk storage.These developments have led to research in parallel data-base systems con-sisting of a large number of o�-the-shelf, and ,therefore, cheap processors. Theprocessors are interconnected by a high-speed network. Typically each proces-sor is equipped with a large amount of memory and a disk. By declustering thedata over the available processors data can be accessed in parallel, leading to animproved response time. A further improvement can be obtained if the hot-set1

2 CHAPTER 1. INTRODUCTIONof the data can be kept in main memory. These systems are commonly knownas main-memory data-base systems.Examples of commercial parallel data-base systems are Teradata DBC/1012[Pag92] and Tandem's NonStopSQL [Gro87]. Recently, the Esprit EDS proto-type [WT90] has been developed into a commercial product, called the Goldrushmachine. Research prototype systems are Bubba [Bea90], Gamma [DGS+90],and PRISMA [AKW+92].The relational data model upon which these systems are based is well under-stood and has proven to be both cost e�ective and e�cient to support simpleadministrative and business applications. However, the data model is not richenough to support scienti�c or non-standard applications. This is exempli�edby the requirement for multi-media data bases [HRD93, vdBvD93] to supporthyper-text structures, video, and audio data types and in geographic informa-tion systems (GIS) [KvdB91] by the demand for e�cient support and access tomulti-dimensional data structures. This mismatch between the data structuresused in the application program and the data-base data model is commonlyknown as the impedance mismatch.Object-Oriented Data Base Systems (OODBMS) reduce the impedance mis-match by o�ering a rich data model and the ability to specify operations onuser-de�ned complex data types. The research on OODBMS has resulted in alarge number of prototypes and commercial systems. Examples of these systemsare O2 [Dea90], Versant, ObjectStore, and ORION [KBGW90]. These systemshave been developed independently and, consequently, do not share a commondata model. Only recently the OMG consortium has been formed to specify acommon interface and data model resulting in the ODMG data model [Cat93].The baseline for data-base-system research is the development of e�cient, ande�ective systems to support today's applications. Therefore, the combination ofboth research issues, parallel query processing and OODBMS, seems justi�ed toattain this goal. Moreover, few research e�orts have addressed the design of aparallel OODBMS or Complex Object Server [Tee93].This thesis is a monograph on parallel query processing in a main-memory database. Speci�cally, the application of parallel query processing in an OODBMS isexamined. The combination of parallel query processing and OODBMS increasesthe problem of e�cient query processing. The main topic of this thesis is toexplore a novel query processing architecture which employs dynamic (adaptive)query processing techniques to improve the performance of a parallel data- basesystem. The discussion addresses many issues of data-base systems that havea strong impact on performance: the object storage model, query optimization,load balancing, and bu�er management.Before we can state our research goal more precisely we have to introduce theparallel query processing issues to explain the shortcomings of current parallelquery processing architectures. We then present the outline of this thesis.1.1 Issues in parallel query processingIn this section we give a short overview of the factors that determine the per-formance of a parallel data-base system. We assume the reader has a basicunderstanding of the relational model and relational algebra. We concentrate

1.1. ISSUES IN PARALLEL QUERY PROCESSING 3
Data

Process

Result

Data

Process

Result

Process

Program Parallelism

Process

Data

Result

1

2

1 2

1 2

Data ParallelismFigure 1.1: Two forms of parallel executiontherefore on query processing. First, we make a distinction between two types ofparallelism, and introduce the techniques used to exploit them. Next, we give anoverview of query processing in a parallel data-base system. Finally, we sketchthe problems inherent in the current architectures.1.1.1 Parallel query executionIn parallel data-base systems two orthogonal types of parallelism can be found:data parallelism and program parallelism [PMC+90]. The di�erence is illustratedin Figure 1.1.Data parallelismData parallelism is obtained by data partitioning or declustering. In this tech-nique the tuples in a relation are divided in sub-sets or fragments. The number offragments is termed the partitioning degree. In distributed data-bases this tech-nique is also known as horizontal fragmentation. By allocating the fragmentson di�erent processors or disks, they can be accessed in parallel. The basic ideais that the response time of an operation (query) is reduced by executing it onthe (smaller) fragments in parallel. Consider for instance a select operation.If the operand relation is partitioned and allocated on di�erent processors, arange select operation can be executed on all the relation fragments in parallelleading to a reduced response time. In dynamic partitioning the relations orintermediate relations are partitioned as part of the query process to introduceparallelism. This technique is e�ective for calculating expensive operations likethe join operation. The invested partitioning overhead must be justi�ed by thereduced response time for calculating the join operation in parallel.An important issue in parallel data-base systems related to data partitioningis data placement. This has a great impact on the system load distribution. It

4 CHAPTER 1. INTRODUCTIONis better to avoid data transport by bringing the operations to the data thanby bringing the data to the operations. If two fragments are frequently usedtogether it is wise to place them on the same memory. The placement dependstherefore on the workload. A corollary of this is that if the workload shifts, thedata placement must be adjusted, preferably at run-time without interruptingrunning applications.To increase the data availability in view of processor failures or concurrentrunning queries, data can be replicated. The data replication technique main-tains copies of a fragment on di�erent processors. This brings up the additionalproblem for keeping the replicas in a consistent state. For this purpose replicacontrol algorithms have been designed. Maintaining replicas further complicatesthe data placement task.The in
uence of these three techniques data partitioning, data placement anddata replication on the system performance is di�cult to predict and dependson several factors: the partitioning degree, workload, and replication degree.Program parallelismProgram parallelism is obtained through query decomposition. A query is split insub-queries which are executed in parallel in a producer-consumer relationship.This technique is also known as pipeline parallelism.The advantage of this scheme is that intermediate results produced in a querypipeline do not have to be stored. Instead they are temporarily maintained in abu�er between two sub-query processes. To keep this bu�er small it is importantthat the rate at which one process produces an intermediate result equals therate at which the other processes the data. The e�ect of data
ow executionon query response time and processor load under ideal circumstances has beenstudied in detail by Wilschut [WA91, WFA92, Wil93]. A general cost model,which can accurately predict the response time for a pipelined query is still aresearch issue.The allocation of sub-queries on processors has, similar to data placement, amajor impact on the query performance. This allocation is not only determinedby the placement of the fragments or intermediate results required by the sub-query, but also by the expected CPU cost for computing a sub-query and theactual processor load. The load distribution is not �xed during query evaluation.Consequently is load balancing, in a static pipelined query structure di�cult toachieve.1.1.2 Query processing overviewThe query process is divided into three di�erent stages: query translation, queryoptimization, and query execution. This is illustrated in Figure 1.2, which showsa typical parallel query processing architecture.In the query translation phase the query is translated from its textual rep-resentation into a canonical internal representation. In the process the queryis syntactically and semantically analyzed using the data-base schema. Manyinternal representations are possible, but mostly a query is translated into a

1.1. ISSUES IN PARALLEL QUERY PROCESSING 5

Manager

Data
Manager

Data
Manager

Query Evaluation
Plan

Data

Relational Algebra Expression

Query
Parser

Query
Optimizer

Query
Scheduler

Run-time

Compile-time

Textual Query

Execution Schedules

Figure 1.2: A typical parallel query processing architecture

6 CHAPTER 1. INTRODUCTIONrelational algebra expression, for example eXtended Relational Algebra [WG89]was used in PRISMA and LERA in the EDS project [CBSB92].A possible approach to parallel query optimization is to separate it into alogical optimization part and parallel optimization part. This approach is basedon the assumption that decisions in the logical optimization phase and paralleloptimization are independent. This assumption is not valid, but at least itreduces the complexity of parallel query optimization[HS93].In the logical optimization phase the internal representation is transformedinto a query evaluation plan (QEP). In this transformation the query optimizeruses rewrite rules based on the algebraic properties of the relational operationsto generate alternative, but semantically equivalent, QEPs. The QEP is com-monly represented by an operator tree, where the nodes in the tree represent therelational operations and the edges a data dependency. Examples of these logicaloptimizations are changing the join-order and pushing selections and projectiondown the operator tree. A cost model is used to select between the alternativequery plans and to limit the search space.For a given query many possible QEPs exist. This number grows, roughlyspeaking, exponentially with the number of primitive operations in the query.The query optimization cost can therefore be signi�cant and must be taken intoaccount.In the parallelization phase the optimizer uses the data partitioning and querydecomposition technique to produce a parallel QEP. The operators in the op-erator tree are assigned to processors, on the basis of the data allocation andsub-query cost. In XPRS [SKPO88] the parallelization phase is performed atquery start-up time to obtain the best possible load balance.In the query execution phase the QEP is put into execution by a query sched-uler. The query scheduler assigns the sub-queries to the processors, sets-upthe communication structure for the pipelined sub-query processes, acquiresread/write locks for the accessed fragments, and starts up the processing.1.1.3 Research problem and objectivesIt is the task of the Query Optimizer to select a QEP, that ideally results ina minimal response time and that uses the system resources e�ciently. Thesheer number of possible query plans prohibits an exhaustive search so that theselected query plan is not likely to be the optimal plan.At query compilation time the Query Optimizer uses cost formulas and data-base statistics to generate and evaluate alternative QEPs. Because the �nal QEPis produced before the query runs on the data base, we refer to this techniqueas Static Query Processing (SQP). Static Query Processing has two inherentproblems, which are related to the timing of query optimization. These problemsare related to data skew and sub-query allocation.� The QEPs are based on size estimates of intermediate results. These esti-mates are error prone due to the statistics being maintained and skeweddata. The error culminates with query complexity. A suboptimal queryplan results.

1.2. THESIS OUTLINE 7� The allocation of sub-queries to processors is timed at query startup timeassuming it runs in isolation. As the processor load continuously changesdue to eg. concurrently running queries, this leads to processing bottle-necks in query pipelines and, therefore, often to an underutilized system.When some of the optimization decisions are delayed until at run time moreinformation is available to improve the optimality of the QEP at the expenseof run-time optimization overhead. This approach is called Dynamic QueryProcessing (DQP).In this thesis we propose a dynamic query processing architecture for a parallelmain-memory OODBMS running on a shared-nothing multi-processor system.Our claim is that this query processing technique obtains a better e�ciency andlower query response times than the traditional techniques, because it is designedto adapt the query execution to the current status of both the system resources(CPU and memory), as well as the query behavior itself. Especially in view ofthe increase in query complexity, data complexity and information volume wethink that this scheme facilitates and improves parallel query optimization.The research is mainly focussed on the following questions:� How do you reduce the e�ect of data skew and load distribution in aparallel DQP architecture? Delaying optimization decisions to e�ectivelyreduce these e�ects introduces run-time overhead. Therefore, a commonapproach is to limit the number of run-time optimizations. An alternativeapproach is taken in this thesis. We want to design a query processingarchitecture where run-time optimizations can be performed cheaply suchthat a QEP can be adjusted frequently taking the current load distributionand the actual intermediate result sizes into account.� How do you parallelize an OODBMS? To answer this question we �rstneed to �x an object model and its query language. Once this is donewe must decide on an object storage model that allows the exploitation ofdata parallelism and program parallelism.We approach these research questions by identifying the key processes in thequery processing architecture and evaluating their performance through experi-ments using mathematical models, simulation models or prototype implementa-tions. We have selected a multiprocessor system running the Amoeba operatingsystem [MvRT+90] and a network of SGI workstations as target platforms.1.2 Thesis outlineThis thesis is organized in the following chapters.Chapter 2 discusses the issues and criteria that in
uenced the design of theGoblin OODBMS. The main observation made in this chapter is that a dynamicquery processing architecture should be used. Other boundary conditions arethat the design should be based on a main-memory shared-nothing architecture.The Goblin data model and query language is presented in Chapter 3. Thedata model is mainly introduced to make the thesis self-contained.

8 CHAPTER 1. INTRODUCTIONIn Chapter 4 we discuss the Goblin (distributed) storage model and comparethree alternative object representation models. On the basis of the Goblin datamodel and the boundary conditions we have selected the Decomposed StorageModel.After the storage model the dynamic query processing scheme is presented inChapter 5. It discusses two alternative approaches to dynamic query processing.One based on data partitioning and another based on query decomposition.From these two the data partitioning approach is used because it facilitates loadbalancing and at the same time introduces parallelism.The Goblin query processing architecture is presented in Chapter 6. Followedby Chapters 7 to 10, which discuss task generation, task elimination, task allo-cation, and task evaluation, respectively. The task generator drives the queryevaluation process. Given a query and a partitioned data base it generates tasksthat evaluate the query on a part of the data base. The task elimination tech-nique is a dynamic query optimization technique, which reduces the amount ofwork using feedback information on the query process. The task allocation algo-rithm and the task evaluation algorithm, �nally, decide where a task is executedand how a task is executed, respectively.On the basis of a partial implementation of Goblin we have measured theperformance of its key algorithms. The results are combined to predict theperformance of the completed prototype. The results of these experiments canbe found in Chapter 11.Finally, in Chapter 12 we give a summary of the main results and indicateareas for future research on this architecture.

Chapter 2The Goblin OODBMS
2.1 IntroductionThe Goblin OODBMS presented in this thesis illustrates the issues involved inparallel data-base systems in general and query processing in particular. Themain design issue for Goblin is its dynamic query processing architecture. Its(partial) implementation is used to test the e�ciency of the processing scheme.This chapter addresses issues stemming from the application domain, technolog-ical trends and software engineering. These result in a list of design criteria toguide the design and implementation of the system.Goblin is an experimental system focussed on applications with large volumesof data and that require a rich type structure. Astronomy, robotics, CIM, or ge-ography [Ker91, KvdB91] are examples of such application areas. Moreover, theGoblin design takes into account the characteristics of its envisioned applicationdomain, the hardware trends, and the de�ciency of the current DBMS designsto e�ectively exploit parallelism.The design of a parallel OODBMS involves many issues. Apart from theunderlying parallel platform, it ranges from the programming language, datamodel, storage model to the query processing architecture. In this Chapterour observations are summarized by design criteria for the Goblin programminglanguage, its query processing architecture, and the data representation.The boundary conditions for the Goblin project are set by its applicationdomain, current trends in technology, and the standard software engineeringcriteria, such as
exibility and modular design. These considerations have helpedto formulate from the onset a set of design criteria for the Goblin system. Thein
uence from application, technology and software engineering are discussed to9

10 CHAPTER 2. THE GOBLIN OODBMSa limited extent in the next sections.2.2 The application domain2.2.1 The impedance mismatchIntegration of data bases into larger software systems has the e�ect that databases are accessed more by application programs than by interactive users di-rectly. New, complex applications do not primarily access data-base systemsthrough their 4GL1 interface. The interface requirements for application pro-grams are di�erent from those o�ered by 4GLs of relational data-base systems.This results in an interface problem, commonly termed as impedance mismatch,signifying the loss of power in the interface. In this context the impedance mis-match refers to overhead incurred by the conversion of data in the applicationdata-base interface. This is caused by the semantic incompatibility between thedata-base model and programming language model.The impedance mismatch can be reduced if DBMS and application languageare based on the same type system and storage model. This goal can beachieved by extending an existing programming language with data-base ca-pabilities through new language constructs or through libraries. Examples ofthese systems are GemStone (SmallTalk), Exodus (C) and Ontos (C++), whichhave added constructs for persistency, transaction management and concurrencycontrol to the language.An alternative and more radical approach is the design of a completely newdata model and data manipulation language (Galileo). The main disadvantage ofthis approach is that it complicates the integration with existing software pack-ages and requires the application programmer to learn yet another programminglanguage.In the hybrid approach the data-base programming language is embedded inthe application language. This approach is taken for instance by O2. It providesa SQL-like language for specifying data-base queries. These queries are includedin the application program written in C or C++. A preprocessor replaces theseembedded queries by calls to the data-base system.In Goblin we take a signi�cant subset of C2 and provide a clear interfacewith DBPL primitives. This is a hybrid approach. The bene�t is that, becauseexploitation of parallelism is one of the key issues in Goblin, a data-base pro-gramming language is developed that contains easily parallelizable constructs fordata manipulation, which can be embedded in an application program. There-fore to reduce the impedance mismatch we arrive at the following requirementfor the application language interface.Criterion 2.1 The language should have a type system compatible with its pre-dominant application programming language.1fourth generation language e.g. SQL2C++ was considered, but initially rejected due to its baroque language constructs. Wemay come up with a compatible syntax subset for C++.

2.3. SOFTWARE ENGINEERING 112.2.2 ExtensibilityIn some cases a rich type system is not su�cient to support an application e�-ciently. Multi-media applications, for instance, store and manipulate video andaudio data and often require special hardware for compressing, uncompressingand displaying the data. Furthermore, the resource requirements for audio andvideo are enormous and could impede the data-base performance if not handledwell. These applications are better supported if the set of base types can beextended and the basic operations on these types can be de�ned.Essential to extensible data-base systems is the ability to support new user-de�ned types e�ectively. This implies support at the language, optimization andaccess level of the DBMS. Examples of such systems are, for instance, Postgress[SRH90] and EXODUS [CDRS86] and Gral [BG89]. These systems can, by theirmodular design, easily be adapted to a changing hardware environment and tochanging requirements of an application domain. Adding a new type mainlyrequires the de�nition of its optimization rules and the de�nition of a few basicstorage- and access functions.Consider, for instance, an application that manipulates images. By addingthe image type with its operations, a set of rewrite rules and cost functions, thegeneral query processing and optimization mechanism of the data-base systemshould be able to process queries against image types [BG89].Therefore, we arrive at the following criterion:Criterion 2.2 The language should support a facility for de�ning abstract datatypes including cost functions and optimization rules for the optimizer.2.3 Software engineering2.3.1 Language designThe same design criteria as for general programming languages are applicable toa modern DBPL, viz. simplicity, expressiveness, orthogonality and de�niteness.Simplicity enables a user to master the language in a short period of time. Thelanguage should o�er only a limited set of constructs that enable the programmerto express a concept in a single way.Criterion 2.3 Goblin should have a limited set of orthogonal programming lan-guage features.De�niteness means that language semantics and syntax are clearly de�ned.A concise and small formal language de�nition assists a novice or language im-plementor. Currently a lot of research e�ort is put in providing the �eld ofOODBMS with a sound theoretical basis. In the design of the data model wewere in
uenced by work of Cardelli [Car84] on subtype hierarchies. The generallanguage
avor is borrowed from O2.It would be outside the scope of this thesis to attempt this exercise for Goblin.We will therefore only stress its importance in the following criterion and leaveit at that.Criterion 2.4 The Goblin language syntax and it semantics should be correctlyand clearly de�ned.

12 CHAPTER 2. THE GOBLIN OODBMS2.4 Technological trends2.4.1 Multiprocessor systemsIn high-performance systems there is a trend towards MIMD architectures con-sisting of large numbers of o�-the-shelf (cheap) processors. To exploit thesearchitectures, Goblin focuses purposely on handling (large) collections of ob-jects, because it is the operation on bulk data with order-independent semanticsthat has proven to be a decisive factor in the exploitation of parallelism. Fastnavigational access to a single object is a focus of (more) e�cient OOPL imple-mentations. The primitive operations, in which user queries are transformed,operate therefore on sets of objects.Criterion 2.5 The Goblin primitive operations should be set oriented to avoidmessage handling becoming a dominant processing factor.E�cient resource management in a multiprocessor system includes the allo-cation of work to processors. Evidently, this requires information on load dis-tribution that is only available at run-time. This is formulated in the followingcriterion:Criterion 2.6 Goblin should have a dynamic query processing scheme to exploitavailable CPU resources e�ectively.2.4.2 Main memoryThe storage cost expressed in $/byte for main-memory is declining faster thatfor magnetic disks. If the current trend continues, the break-even point willoccur in the year 2015 [Gib91].Therefore, the Goblin architecture focuses on loosely coupled multiprocessorswith su�cient (combined) main memory to keep the data-base hot set and theintermediates for query processing memory resident. This assumption continuesthe thread started in 1986 with PRISMA[KAM+87, AKO88] and aligns withmarket expectations for cheap computer systems with an abundance of mainmemory.The validity of this assumption is illustrated by the EDS project. The data-base system developed in the EDS project focuses on On-line Transaction Pro-cessing (OLTP) and Decision Support Systems (DSS). One machine is a shared-nothing architecture, consisting of processor clusters interconnected through ahigh performance network. Each cluster contains 8 - 64 processors, where eachprocessor has 64 Mbytes of stable main memory. The other machine, DBS3[BCV91], is a shared-memory machine, which is also equipped with a large mainmemory.Criterion 2.7 Goblin should be designed as a main-memory parallel data-basemanagement system.2.4.3 Physical designParallel data bases add to the complexity of physical design. Traditionally, phys-ical data-base design includes identifying attribute indices, the storage structure

2.5. CONCLUSION 13to be used, and how the relations should be clustered. Input to data-base designare the predominant queries, estimated data-base size and the data-base schema.More information on physical data-base design can be found in [TF82].Furthermore, in a distributed system query processing implies �nding a bal-ance between data transport and query allocation. At the same time, exploitingparallelism requires data replication. As access patterns change over time, anoptimal physical data organization, is likely to be optimal for only a short periodof time. In the ideal situation, the data storage is self-organizing with respectto indexing, clustering and replication. However, a su�cient body of experi-ence from both theory and systems is lacking to support this goal. Therefore,any investment in building a new system should be prepared to investigate newadaptive techniques.Criterion 2.8 The Goblin object storage and indexing scheme should facilitatethe use of adaptive techniques.2.4.4 Operating systemsIn Goblin we expect parallelism to be exploited e�ectively in query dominantenvironments with local updates. This means that portions of the object spacecan be replicated on demand, while their contents is kept synchronized using aread-one-write-all protocol using the facilities of the underlying operating sys-tem.A large part of current DBMS systems provide solutions to problems thatshould be ideally handled by the operating system. In Goblin we do not aimfor a (re-)implementation of basic distributed operating system facilities, suchas memory-mapped �les, persistent storage, network management, concurrencycontrol primitives, and caching. Instead, we focus on mechanisms to advise acooperative distributed operating system on how to optimize its resource alloca-tion. Such facilities are readily available in the latest operating system kernels[JR86]. For instance, the ability to pin or unpin pages in memory or to givepage bu�ering advice.Criterion 2.9 Goblin relies on the (future) availability of advanced distributedoperating systems, to o�er globally accessible persistent data, concurrency-controlprimitives and cache-control primitives.2.5 ConclusionThe Goblin design is in
uenced by issues and developments from three di�erentdomains: the technology, the application domain and software engineering. Wehave selected from each of these domains a few issues and formulated designcriteria based on the observations.Of these domains the application domain and technology have the greatestimpact on the design. Basically, the application domain made us decide todevelop an object oriented data base. The technology has lead us to implementit as a main-memory shared-nothing data-base system.

14 CHAPTER 2. THE GOBLIN OODBMSIn the following chapter we will give a
avor of the Goblin object orientedlanguage, which provides the baseline of this thesis. The rest of this thesis is pri-marily concerned with the design and implementation of the Goblin OODBMS.

Chapter 3The Goblin Query Language
3.1 IntroductionE�ective use of parallelism for query processing does not only pose constraints onthe underlying hardware and software architecture, but also puts requirementson the data model and query language.For instance, the concept of message forwarding in object oriented data modelspossibly impedes e�cient execution. It forces the execution model to handleobjects on an individual basis. Our data model is chosen such that it can beeasily translated into a relational model. The associated relational operationsare set oriented and can be e�ciently implemented for handling bulk data.Furthermore, the language should provide constructs that can be parallelized.It is di�cult to parallelize a query that uses control
ow statements togetherwith globally shared variables to access data, because it �xes the order in whichthe objects are accessed. A non-procedural, declarative query speci�cation o�ersmore opportunities for parallelization, but also complicates the programming ofsome inherently sequential processes. The goal is �nding a reasonable balancebetween imperative constructs and declarative programming.In the following sections the main issues in the design of the data model andquery language are presented to the level required to understand the subsequentchapters.3.2 Object-oriented data-base conceptsThe research community has not yet reached an agreement on the features andcharacteristics that should be supported by an object-oriented data-base sys-tem. This is illustrated by the wide variety of object-oriented database systems.15

16 CHAPTER 3. THE GOBLIN QUERY LANGUAGEConsider, for instance, the Postgress and GemStone systems. The Postgress sys-tem is an example of a relational system extended with object-oriented features,while the GemStone system can be seen as an object-oriented language systemextended with database functionality, like persistency, transaction managementand query facilities.In an attempt to solve these di�erences in 1989 a group of researchers compileda statement on the features an object-oriented data-base system should at leastsupport [ABD+92]. Only, recently a consortium of industry, the OMG group,has started in de�ning a common standard [Cat93]. To be self-contained, andbecause our data model is slightly di�erent, we introduce the basic concepts inthe following sections.3.2.1 Complex objectsBeing focussed on the object-oriented paradigm, the notion of object identityis an essential part of the model. Objects represent entities in the Universe ofDiscourse (UoD). Once an object becomes a part of the UoD, it has a uniqueidentity, which allows it to be distinguished from other objects in the UoD.Complex objects are modeled using object attributes and object methods. Theobject attributes describe the state of an object in terms of its relationships withother objects (or values), while the object methods specify the behavior or statetransitions of the object through procedural abstractions. The object methodsalso provide the interface with the application program and the data base.During its (UoD) lifetime the number of relationships and the properties ofrelationships can change. Consider, for instance, an object that represents aperson. Once a person marries, the object establishes a 1-1 relationship withanother person object. Their children can be naturally represented by 1-N aryrelationship to both parent objects.The behavior of an object, i.e., the methods an object can execute, can alsochange during its life-time. For instance, if a person gets a job he becomesan employee. Consequently, the associated object will be able to answer all themethods that are applicable to employee objects.The key observation, elucidated by this example is that both the relation-ships an object participates in and its behavior are highly dynamic propertiesdetermined mostly outside the context of any computerized system. Conversely,a computerized system can not preclude the relationships of the object in theUoD. They are not �xed during schema design and the database should be ableto handle exceptions to the rule invented at design time.3.2.2 ClassesTo simplify object handling in a computerized system and real-world informationsystem, they are grouped into classes based on commonality of their relationshipsand their behavior. A class has an unique name, a class speci�cation, and a classextent.The class speci�cation speci�es constraints on the structure, behavior, andstate, that hold for objects in the class, or it serves as a template, when an objectis created, specifying the minimal set of attributes and applicable methods.

3.2. OBJECT-ORIENTED DATA-BASE CONCEPTS 17In addition, the class extent is the set of objects that minimally satisfy theconstraints from the class speci�cation. The objects in the class extent can bemanipulated by applying methods on all objects in the class extent, or selectinga subset by querying the class extent.There are two approaches to populate the class extent: explicitly or implicitly.In the object factory[ABD+92] approach objects are created by applying a newoperation to a class, which results in adding the object to its class extent. Oncecreated, the object remains in the class extent until it is explicitly destroyed.In the object taxonomy or implicit approach, the class speci�cation is used asa shorthand to create an object with a certain set of properties, because thesame object can be created by adding attributes and methods individually; theclass extent is dynamically populated. Objects in the database that have theminimal properties required by a class are added automatically to its extent. Ifproperties are dropped, the object is possibly removed from the class extent.The most signi�cant di�erence between the two approaches is that in theobject factory approach it is possible to de�ne two classes having the same classspeci�cation, but with non-intersecting class extents. In other words, the classextent is used as a set mechanism, which is often available in the same datamodel as a separate constructor as well.In our opinion this is an improper combination of concepts. If there is aneed to distinguish between objects by structure or state, the distinguishingproperty should be named and added to the class speci�cation. This aligns withthe approach in natural sciences where objects are classi�ed implicitly on thebasis of the objects they are related to, and their behavior. In Goblin we followa similar approach.3.2.3 Inheritance and class hierarchyInheritance helps a data-base designer in factoring out (shared) speci�cations.Furthermore, it leads to a concise description of the UoD.A subclass can be de�ned by adding methods, constraints or attributes to aclass already de�ned. The specialized class inherits the attributes and methodsof the old class. Constraints over objects in the old class will also hold for theobjects of its subclass. This kind of inheritance is also called inclusion inheritance[Car84].For instance, if the class Person with attributes name and spouse and methodsmarry and die is de�ned, then the new class Employee can be de�ned to be aspecialization of the Person class with the ISA construct: CLASS EmployeeISA Person. This construct speci�es that the Employee class has at least theattributes and methods de�ned for the Person class. The attributes de�ned inthe remainder of the speci�cation are added to this set of inherited properties.Together with their inheritance relations the classes form a class hierarchy.This hierarchy is essentially an object taxonomy, which distinguishes and groupsobjects on the basis of their properties. The top of the class hierarchy is formedby the most general class: Object. If an object looses all its properties or doesnot satisfy any of the class speci�cations, it is still a member of this class.

18 CHAPTER 3. THE GOBLIN QUERY LANGUAGE3.2.4 Objects versus valuesAn essential feature of an object-oriented data-base system is to simplify model-ing complex objects. A common approach is to provide a set of base types (eg.int, string,
oat) and a collection of type constructors, like tuple, set, list andarray. A type de�nes, set-theoretically speaking, a subset of all possible values.For instance, the type int contains all integer values. An integer variable refersto any element in the integer domain. Objects are commonly de�ned as a pairconsisting of an object identi�er and a (structured) value.An alternate viewpoint is to consider the base types and type constructors tobe base classes and constructor or parameterized classes, respectively. The maindistinction between the two approaches is that the �rst approach supports bothvalues and objects, while the second approach only supports objects.In the early working documents of Goblin [Ker91] a distinction was madebetween objects and values, similar to the approach taken in O2. In [Bea88] thischoice is mainly driven by engineering considerations.A point raised to advocate the support of both values and objects is that itis cheaper to update privately owned objects. Moreover, in the implementationof a programming language, the detection of privately owned objects plays animportant role in the optimization of updates to private objects. In a databasecontext, however, the problem lies not in the optimization of updates of, oraccess to single objects, but in the optimization of queries on large sets of similarobjects. In Goblin, to support e�cient content-based data access, the physicalrepresentation does not necessarily re
ect the logical representation. Thereforethe need to recognize private objects for query-optimization purposes largelydisappears.Furthermore, duplicate elimination is cheaper if both values and objects aresupported. To recognize duplicate objects a distinction must be made betweenidentity and equality. Two objects are identical if their object identi�er is thesame. Two objects are equal if their values are recursively equal. In a pureobject-oriented data model they have to (recursively) refer to the same baseobjects. Therefore, the whole object structure must be traversed before it canbe decided that two objects are equal.Another argument is that values are more appropriate for representing tem-porary results. This is true for queries that retrieve a single attribute value.However, query results are generally complex structures, which capture the re-lationship between objects existing in the database. The query can thus beconsidered an ad-hoc classi�cation of the objects residing in the database. Inthis light each solution can be seen as an object itself with a unique identity.The �nal argument forms the application-program data-base interface. Asmost applications are written in a value based language, the data base shouldo�er both objects and complex values for the interface. However, this can beavoided if the data base can not be manipulated directly, but is only accessi-ble through methods. The values of the base types occurring in the methodsparameter list are 'mapped' on their counterparts of the base classes. Complexobjects are created with the methods de�ned for the class and they are referredto by properly typed variables.

3.3. LANGUAGE OVERVIEW 193.3 Language overviewThis section gives a brief overview of the Goblin language and concentrates ona small subset of the language, relevant to the design of the Goblin DBMS. Amore complete preliminary description can be found in [KvdBS+93].We give a top down description of the language starting with typing andclass speci�cation. The remaining concepts like functions, methods, statements,expressions are de�ned on the way.3.3.1 Types and subtypesIn a programming language the structure of a value is captured by its type def-inition. Typing is a powerful concept to reduce semantic errors and to producee�cient programs. In a database context, however, data outlives the programand even worse, the real world entities represented, can change their type dy-namically. Therefore, types are used in Goblin in a class speci�cation to de�nethe minimally required structure for objects in the class extent.In the data model the type of an object was de�ned recursively in terms ofthe base types and type constructors. In general two kind of object can bedistinguished: atomic objects and complex objects.Atomic objects are de�ned using the set of atomic types object (generic ob-ject), int (integer values), str (character strings), float (
oating-point num-bers) and bool (boolean values). Furthermore, the collection of base typescan be extended using an abstract-data-type facility. For brevity, this facilitywill not be further discussed. Atomic objects can not change their value or bedecomposed into subobjects. A �xed set of functions is de�ned on them as pre-scribed by their compile-time ADT. For instance, on integer objects the functionto multiply two integer objects de�nes a mapping from two integer objects toan integer object.To model complex objects the Goblin data model provides the standard setof constructors tuple, union, set, array, bag, and list. These constructorsgroup multiple objects into a single object. For instance, a tuple type objecthas its own identity and it associates the tuple object with a collection of sub-objects. Contrary to atomic objects, the composite objects can be decomposedinto subobjects and the association with these subobjects can be changed.Example 3.1 In the following example the types Person and Address are de�ned.Note that the de�nition of Person is recursive. The recursion on the spouseand kids attributes imply that the subobjects are restricted to objects of the typePerson. For readability type names are written in capital letters in our examples.type ADDRESS = tuple(str street;int number;str city;)

20 CHAPTER 3. THE GOBLIN QUERY LANGUAGEtype PERSON = tuple(str name;ADDRESS address;int dob;PERSON spouse;set(PERSON) kids)To obtain a terse speci�cation of tuple types, it is possible to de�ne a tupletype by specialization or generalization of a tuple type. These operations forma tuple type by adding or subtracting attributes from a prede�ned tuple type,respectively.Example 3.2 The �rst example illustrates how the Student type is de�ned asa specialization of the Person type by extending it with the major attribute.The second example shows type generalization, considering the de�nition of thePerson type to be a generalization of a Student.type Student= Person + tuple(str major);type Person = Student - tuple(str major);3.3.2 Class and subclassA class speci�cation serves two purposes. First it is used as a mechanism togroup and provide access to similar objects. Using the class name, functionsand methods can be applied to all the objects in the class extent. Second, it is atemplate for creating objects with a minimal set of prerequisite properties. Thelatter usage will be discussed in Section 3.3.6.Classi�cation of individuals on the basis of their properties is generally usedtechnique to control the complexity of the real world. As the properties ofindividuals evolve over time, they will move from one class to another withoutmanual intervention. Therefore, in Goblin class membership is considered to bea dynamic property, which is determined by two factors: structure and state. Ifthe data base is updated, the class extents will be changed accordingly. Thus,in Goblin classes play a role similar to data-base views in relational systems.Furthermore, the class speci�cation determines the set of methods that can beapplied to the objects in the class extent.The minimal class speci�cation consists of a class name and a tuple-typespeci�cation. Consequently, the objects in the corresponding class extent cannot be manipulated through methods or functions other than those which areprede�ned for objects of the speci�ed type. Thus, because the type is always atuple type, the attribute values of the objects in the class extent can be retrieved.

3.3. LANGUAGE OVERVIEW 21Example 3.3 The following class de�nition de�nes the Person class to consist ofobjects having the structure speci�ed by PERSON.class Person type PERSONThe behavior is speci�ed by the methods and functions that can be applied tothe objects in the class extent. The user can extend the standard set of functionsand methods implied by the type by de�ning its own set of operations. Eachmethod and function de�nition consists of a speci�cation and implementationpart.Its speci�cation de�nes the minimally required types for the parameters andthe target type. The latter type refers to the type of the object to which theoperation is applied. For a correct class speci�cation the class type must be asubtype of the target types of its methods and functions, because an operationcan not refer to an attribute that is not de�ned for the objects in the class extent.Methods or functions can either be implemented in the Goblin language itselfor be linked to externally de�ned functions. The latter possibility is included toprovide access to large existing applications or software.Example 3.4 Continuing our example, we consider extending the Person classwith a function age to determine the age of a person and a method move, whichchanges person's address. The implementation of these operations can be foundfurther on.class Person type PERSONPerson.age();Person.move(ADDRESS NewAddress);Classi�cation by state is controlled with a class constraint. This constraintis a predicate satis�ed by all the objects in the class extent. It consists of thekeyword where followed by a boolean expression over the attributes de�ned bythe class type. The symbol self in the class constraint refers to an individualobject from the class extent.Example 3.5 The following example completes the Person class de�nition with aconstraint, which speci�es that the age of a person should be a positive numberand that its address must be de�ned.class Person type PERSONwhere self.age >= 0 and not(self.address == nil)Person.age();Person.move(ADDRESS NewAddress);The class inheritance construct isa allows reuse of class speci�cations. Themethods applicable to objects from the original class are also applicable to the

22 CHAPTER 3. THE GOBLIN QUERY LANGUAGEobjects of the new class. Furthermore, the class constraint is the conjunction ofthe class constraint of the original and the newly de�ned class. Finally, the typeof the new class is simply the aggregation of the type of the original class andthe de�ned class.Example 3.6 To illustrate the e�ect of inheritance we give two semanticallyequivalent speci�cations of the Employee class. The �rst speci�cation uses theinheritance relation and adds an attribute, method, and constraint to the Personclass.type WORK = tuple (str company; int salary);class Employee isa Person type WORKwhere self.salary > 10,000;Employee.raise(int increase);This speci�cation is equivalent to the following explicitly de�ned class:type EMPLOYEE=PERSON + WORKclass Employee type EMPLOYEEwhere self.age >= 0 and not(self.address == nil)and self.salary > 10,000;Employee.age();Employee.move(ADDRESS NewAddress);Employee.raise(int increase);3.3.3 Derived classesThe classes de�ned until now are implicitly populated by objects that alreadyexist in the data base. However, an important feature of data bases is thepossibility to combine the stored information and make the relations betweenthe objects explicit. For this purpose the Goblin provides the derived classconstruct. It is the only construct for querying the data base.With this construct a new class can be de�ned in terms of existing classes.The derived class speci�cation enumerates in a binding list the class extents fromwhich it is derived. The binding list is a list of class name and attribute pairs.These pairs implicitly de�ne the type of the derived class to be a tuple type ofthe named attributes and their corresponding type.Similar to an ordinary class, methods and functions can be de�ned whichoperate on the underlying class extents. The derived class extent follows thechanges in the underlying class extent.Without the class constraint the extent of the derived class consists of theCartesian product of the class extents occurring in the binding list. Similar tothe normal class speci�cation, is the class constraint a condition which must besatis�ed by all the objects in the class extent.

3.3. LANGUAGE OVERVIEW 23Example 3.7 The following example illustrates how the class extent for couplesis constructed from the Person class. Note that the extent of the Couples classis implicitly populated and re
ects changes in the database. The attributes p1and p2 of the Couples class extent range over the class extent of Person. Thetype COUPLE de�nes which attributes in the binding list occur in the result. Fur-thermore, it de�nes the properties maintained in the Couples class to be able tode�ne the function lat, which checks whether a couple lives separately.type COUPLE= tuple(PERSON p1; PERSON p2);class Couplesfrom Person p1, Person p2where p1.spouse == p2 and p2.spouse == p1Couples.lat()3.3.4 Functions and methodsThe major advantage of OODBMS over relational databases is the possibility tospecify the behavior of objects. This feature reduces the impedance mismatchbetween the procedural application language and the declarative data-base querylanguage.In Goblin the behavior of an object of a speci�c type is captured by func-tions and methods. Functions are used to model derived attributes and do notchange the data-base state. Methods are intended to model object updates, andguarantee the common transaction properties.For the base types the standard set of functions for manipulating boolean, nu-meric and string objects is supported. These functions de�ne mappings betweenobjects of the base types. There are no methods de�ned for the base types,because these objects are static entities.For the complex types, functions are de�ned to access subobjects. The dotoperation provides access to subobjects of a tuple object. If a tuple o has anattribute a, the operation o:a returns the object associated with attribute a.The result type is the same as the type of the subobject.On sets and bags the standard operators union (+), di�erence (�), intersect(*), membership test (in) and set comparison operations are provided. Theindex operations ([]) provides access to the individual elements of array and listobjects. List objects can be concatenated with the operator (+).For the aggregate constructors, set, array and list, standard methods are de-�ned to insert (+) and delete (�) elements. The equivalent operation on tupleobjects adds (: +) and deletes (: �) tuple attributes, respectively. The lattertwo operations change the type of an object and therefore have an e�ect on theclassi�cation of the object.Example 3.8 The following example illustrates how a Person object becomes amember of the Employee class by adding the required attributes salary and

24 CHAPTER 3. THE GOBLIN QUERY LANGUAGEcompany. The modi�cation must be performed in a method.Person.workfor(str company; int salary)f self:+ WORK;self.company= company;self.salary = salary;gNaturally the user can extend the set of methods and standard functions. Thenext section summarizes the basic building blocks. For a complete overview wemust refer to [KvdBS+93].3.3.5 Statements and expressionsMost of the imperative programming constructs are o�ered to let a user de�nehis own functions and methods. These features include expressions, assignment-,conditional-, repetition-, return- statement and function calls. Within a functionor method de�nition the symbol SELF refers to the object to which the functionor method is applied. Function and method application is annotated with the dotoperator. If o is an object and f an operation then o:f() executes the operationcode on the object o. If the operation does not have an argument, the bracketscan be omitted.The dot operator for function application and attribute selection is left-associative,which allows the programmer to intermix attribute selections and function ap-plications in a single expression. This expression is called a path-expression,because it speci�es a traversal through several objects.If a path expression occurs as the left hand of an assignment, the statementassociates the object identi�er of the object speci�ed by the path expression, tothe object occurring in the right hand side. The object type of the right handside must be a subtype of the object on the left hand side.Example 3.9 The following example de�nes the age function and move methodused in the class speci�cation of Person. Function and method speci�cation usea C-like syntax.The variable now is a global integer variable, which maintains the time. The as-signment in the de�nition of method move changes the association of the addressattribute.int Person.age()f return now - self.dob;g

3.3. LANGUAGE OVERVIEW 25Person.move(ADDRESS NewPlace)f self.address = NewPlaceg3.3.6 Objects and class extentsThe class speci�cations also serve as templates for creating objects. Initially thecreated object will therefore be added to the class extent, if it satis�es the classconstraint.Previously we have described how the type of tuple objects can evolve usingthe operations to add or delete attributes. Similar operations are available tomodify the behavior of objects by adding or deleting methods and functions toobjects.Example 3.10 To facilitate manipulation of objects, variables can be used to holdan object reference. The following illustrates the creation of a Person object.Uninitialized attributes refer to the nil object.John=Person(name=`John Doe',address=Address(street=`42st',number=1239,city=`New York'),dob=1892008)3.3.7 Application interfaceThe �rst step in the design of an application on the basis of an existing data baseis to identify the information to be extracted. This information may alreadybe available in the form of the previously Person class, or may be extractedby querying several classes, like the Couple derived class. This steps typicallyresults in the de�nition of a set of derived classes.In the next step the operations on the data is de�ned. These operations can bedisplay operations, linking the Goblin system through functions to a graphicaluser interface, or update operations, which add new or modify objects throughmethod calls.The Goblin programming model is based on classi�cation and method appli-cation. First classi�cation attaches a name to a collection of objects of interest.Then on these objects operations can be performed by applying the method onthe objects in the class extent.Example 3.11 The following application prints out the names of couples that liveseparately. First a class is speci�ed to identify these couples, then the displayoperation is de�ned and, �nally, the display operation is applied to the objects ofthe class de�ned.

26 CHAPTER 3. THE GOBLIN QUERY LANGUAGEclass Lat-couple isa Couplewhere lat(self);Couple.display();f printf("%s, %snn",p1.name,p2.name)gLat-couple.display();3.4 ConclusionIn this chapter we introduced the data model and a subset of the Goblin DBPL.The Goblin data model is designed to support a dynamic environment, whereobjects evolve during their lifetime. This is, contrary to other object-orienteddata models, not restricted to the objects state, but also involves the structure.In this light a class is considered to be a mechanism to dynamically groupobjects which satisfy a minimal set of properties. The de�ned classes form ataxonomy, which allows exceptions; \Platipus" objects from the UoD, which areneither mammal nor bird can still be modeled and exist in the data base.The language provides the derived class concept to access the data base.The declarative nature provides ample opportunities for parallelization and set-oriented operations. Methods and functions form the basis for the applicationinterface and support imperative programming construct to achieve the require-ment of a ful
edged DBPL.This thesis is focussed on parallel query processing. This chapter gives onlya
avor of the language. Consequently, many issues in the language design andits data model have not been addressed.

Chapter 4The Goblin storage model
4.1 IntroductionThe storage model is an important performance factor for a data-base system.The Goblin data-base system design takes a new approach which justi�es con-sidering the possible storage model in depth. The issues of interest are its main-memory design and dynamic query processing.Goblin is a main-memory object-oriented data base, while most work in this�eld has concentrated on disk-based systems. The in
uence of main-memory onthe storage model requires attention to �nd a new balance between storage andprocessing.Goblin is a parallel system and uses a dynamic query-processing scheme. Flex-ible replication and data declustering is essential for e�cient parallel query pro-cessing. Furthermore, the storage model should be adaptive and support run-time query optimization, such as on-the-
y (partial) indexing.In this chapter we �rst give an overview of the approaches to object represen-tation researched in the past. Second, we present the Goblin storage model as alayered architecture, and �nally, we describe each of the storage layers in detail.4.2 Object representation issuesThe base line for an OODBMS is to choose a mapping of the objects from theconceptual model to a physical representation, such that a good update andretrieval performance is obtained.From Chapter 3 we known that at the conceptual level a distinction is madebetween three kind of objects: atom, tuple and set. The atom type objectsare used to represent values from the common base types (int, string,
oat).27

28 CHAPTER 4. THE GOBLIN STORAGE MODEL

partition

offset
length

4 1293

8829

1829

8041

8391

2

3

120

29

Partition Header

Free Space

Heap Space

Record

Directory

Record Slots

Segment

Control Info

Partition

Record field

Directory Entry

Field

Figure 4.1: Physical level storage conceptsTuple objects are of the form (oid; a1 : v1; : : : ; ak : vk). The ai are the attributenames and vi are the corresponding attribute values. The attribute values caneither be objects identi�ed by their object identi�er, or values from one of thebasic types (integer, real, string) supported by the system. Set objects are ofthe form (oid; fvig), where oid is the object identi�er of the set and vi is acollection of values of the same type. List and array objects can be consideredto be a re�nement of a set or tuple object using an implicit naming scheme ofits elements.At the physical level the basic concepts are segments, partitions, directory,records, and surrogates. These concepts are introduced in the following para-graphs. The relationship between these concepts is depicted in Figure 4.1.Each relation or class extent is stored in a variable sized segment. A segmentfurther consists of a variable number of �xed size partitions, which form thebasic unit for allocation, locking and recovery. For main memory data bases thepartition sizes are generally larger than disk pages and range from 64 kbyte -256 kbyte [LSL92].

4.2. OBJECT REPRESENTATION ISSUES 29The partitions store the actual records. For this, each partition consists of aheader containing control information, a list of record slots, and a heap space.The record slots contain the �xed size directory structure of the records. Theactual data is allocated in the heap space of the partition.Surrogates are system generated unique identi�ers, which are independent ofany physical address. A record is a contiguous amount of memory of a (possiblyvariable) number of �elds. Each �eld is used to store a data item, which caneither be a surrogate referring to another record, an atomic value, or a set.The �elds correspond to the attributes at the conceptual level. The map-ping from attribute to �eld is determined by the storage model. It is either�xed at record creation time or it is dynamic to accommodate variable lengthattribute values. In the latter case the record contains a directory to associateeach attribute with a reference to the stored data.In the following paragraphs the design issues involved in choosing an e�ectiveand
exible storage representation are discussed.4.2.1 Clustering and declusteringTraditionally the two main techniques used for physical data-base design areclustering and declustering. Originally they were developed to improve the per-formance of disk resident relational bases. In fact, most research on object rep-resentation remains focussed on disk resident data [VKC86, CDRS86, VBD89,HO88].In designing a storage model for disk resident database systems the I/O bot-tleneck forms the main impediment for a better performance. The bottleneck iscaused by the low disk bandwidth and slow disk access time, due to rotationaldelays and seek time. The performance can be improved by reducing the numberof I/O requests and by increasing the I/O bandwidth through parallelism.The number of I/O requests is reduced by storing attributes frequently ref-erenced together in the same physical record. This physical adjacency of dataimproves access and update performance, because the disk access time dependson the location of the previously accessed record and the rotational delay of thedisks. Grouping object attributes into a single record is also known as clustering.The I/O bandwidth is increased using parallel disks, such as in RAID (Re-dundant Array of Inexpensive Disks) technology [Gib91], which also improvesthe reliability of the I/O subsystem. The parallel disks are not visible throughthe RAID interface. From the data-base system the RAID disk simply appearsto be a fast and reliable disk.Another approach, where the parallelism is visible to the DBMS is decluster-ing, which distributes the records over partitions and stores them on di�erentdisks. The main objective of declustering is performance improvement throughexploitation of parallel disk I/O. In relational data-base terminology decluster-ing is also known as fragmentation. Declustering is an issue orthogonal to thestorage model. Once the record structures have been determined for a databasescheme, the instances can be declustered over the available disks.For memory resident databases physical adjacency is less of an issue, because

30 CHAPTER 4. THE GOBLIN STORAGE MODELthe memory access time is largely independent from the physical address 1. Inthis case the CPU cost for data access and update data is more important.Therefore, evaluation of a storage model for main-memory must take the CPUcost into account.In loosely and tightly coupled parallel memory resident DBMS the data isdistributed over the memories of the available processors. The result of thisscheme is that queries can be executed in parallel on the composing data frag-ments. Furthermore, to achieve e�ective parallel execution, the distribution ofthe data fragments must be taken into account for query scheduling.4.2.2 Object sharingThe ability to handle shared objects is an issue rarely addressed explicitly inpapers on storage models for object oriented data bases. In fact many papersuse the term complex object to denote nested relations or non-�rst-normal-formrelations, which do not support directly the concept of sharing.An object is shared if it is referenced from multiple other objects, called itsparent objects. The clustering techniques aggregate object attributes into asingle physical record. If one of the attributes is a shared object, the storagemodel must de�ne how this is represented. There are basically two approachesto reconcile clustering and object sharing: replication [HZ87] and election .The replication strategy e�ectively stores a copy of the shared object with eachof its parent objects, achieving a perfect data locality. However, this approachsu�ers from the overhead required to keep the replicas coherent. An update ofa shared object must be e�ectuated on all its replicas to guarantee data-baseconsistency. Furthermore, if the data is declustered, the parent objects could beallocated on di�erent sites, requiring a replica control mechanism to keep trackof shared objects to ensure data-base consistency. A possible implementationwould be to store a reference with a shared object to each of its replicas. Updateson a shared object can then be e�ectuated by following the chain of replicas andupdate each one in turn.The election strategy stores the shared object with one of its parents andmerely stores a reference to the shared object with its foster parents. The choiceof candidate parent is either done automatically, based on statistics about thefrequency of reference [TN91], or is under user control.Object clustering in O2 [AK92] and ORION [KBG89] are examples of the user-driven approach. The user can specify with IS PART OF relationships (calledplacement trees in O2) the object location. However, the clustering of sharedobjects is still determined non-deterministically by the system.In a parallel main-memory system object sharing becomes an issue when theobjects are allocated on separate memory segments.4.2.3 Object dynamicityTo support the Goblin data model there is yet another issue that plays an impor-tant role: the object properties can change during its life time. Thus an object1If you do not consider the very fast but small cache memory.

4.2. OBJECT REPRESENTATION ISSUES 31can acquire or drop attributes. A common example of this object dynamicity isan evolving set-valued attribute.In both cases the storage model should be able to handle these changes e�-ciently. Both updates may involve a reorganization of the physical record. Forinstance, extending a set-valued attribute may result in a reorganization of therecord if the memory set aside is insu�cient. In the main-memory implemen-tation of Starburst [LSL92], this problem is solved by introducing tombstones,which are references left behind at the old location to denote the new physicallocation. A side e�ect is that in each access of an object attribute, it must betested whether the data or a tombstone can be found at a certain record o�setand an additional dereference operation may be introduced.4.2.4 Data-base workloadThe performance of a clustering technique strongly depends on the predomi-nant query access patterns. In analogy of the de�nitions given in [HO88], wediscriminate query classes on the basis of their access patterns.class A queries, which manipulate a large number of attributes of a few objects.class B queries, which manipulate a few attributes of a large number of objects.class C queries, which represent the average case, where the ratio accessedattributes per object is more balanced.In the following examples we show representatives for each workload classusing the Person class introduced in Example 3.1.Example 4.1 A representative of a class A query is the selection of a singleobject. Class B queries extract only a few attributes from all objects of a certainclass. Class C queries represents the mixed case.class A isa Personwhere self.name==``John Doe'' ;Class B queries have in common that they select only a few attributes of allobjects. In Goblin this is expressed through the type speci�cation.type NAME=tuple(str name)class B type NAMEfrom Person p, p.name name;Class C queries represent the mixed case, where only a part of the object isretrieved from a selection of objects.type CTYPE= NAME + tuple(ADDRESS address)

32 CHAPTER 4. THE GOBLIN STORAGE MODELclass C type CTYPEfrom Person p, p.name name, p.address addresswhere self.address.city =='Paris'One of the design guidelines mentioned in Chapter 2 is our focus on applica-tions with large collections of similar data, rather than navigational queries. Inother words, the B and C workload are the focal point for the Goblin architec-ture.4.3 Object storage modelsHaving shortly introduced the main design issues of an OODBMS storage model,we will now explore some in more detail before we present the choice made forthe Goblin storage model.Example 4.2 As a running example of the di�erent storage schemes we considerthe representation of the following Person object (See example 3.1). It is usedto calculate the minimal storage cost excluding search access paths.a1 = Address(street='42 st.',number=1239,city='New York')tom = Person(name='Tom Doe',)alice= Person(name='Alice Doe',)jane = Person(name='Jane Doe',address=a1,dob=829128,address=a1,spouse=john,kids=ftom,aliceg)john = Person(name='John Doe',address=a1,dob=829109,address=a1,spouse=jane,kids=ftom,aliceg)We use a graphical presentation to show the di�erent storage schemes. InFigure 4.2 a legend can be found.4.3.1 Flattened Storage ModelIn the
attened storage model (FSM), also known as the direct storage model,each object with all its attributes is stored into a consecutive byte sequence.Tuple- and set valued attributes are contained within a physical record. Forinstance, the ADABAS hierarchical database system stores the segments of ahierarchical record in a single �le [Oll71]. In OASIS [Wie83] a tuple with all itsdescendants are stored in a single variable length record.To accommodate variable sized �elds, the record contains a directory for eachobject, subobject, or set-valued attribute, which encodes for each attribute valueits o�set within the physical record. Access to a particular attribute requiresat least one additional dereference operation to retrieve the �eld o�set from the

4.3. OBJECT STORAGE MODELS 33
surrogate

fixed size

(int, bool,float)
variable size

(string)

surrogate
variable

size
surrogate fixed size surrogate

S

Tuple Value

surrogate directory

Set Value

surrogate directory

cardinality

Atomic Value

D#SDS Data Elements

S VD S FD

F V

SFigure 4.2: The symbols used for representing tuple, set and atomic valuesrecord directory for single valued attributes and two dereferences for set-valuedattributes. One to retrieve the o�set for the directory containing the o�sets ofits elements.Example 4.3 In the FSM the object \John Doe" is represented by a single record,containing its address, and the complete records of its children (See Figure 4.3).Let s; i and p denote respectively the size of a string, integer and pointerrespectively. Then we count the total number of bytes used this data base asfollows. Using a replication strategy the kids are stored with both their parentobjects john and jane.The address has a �xed size of 2s+ i Assuming �xed length strings, the �eldo�set of the attributes is determined at compile time, so that this object does notrequire a directory.A person object references the subobjects address, spouse and kids. Therecord directory contains therefore 3 pointers. If the set kids contains n ele-ments, an additional i+n:p bytes must be reserved to store the references to thesubobjects.Both children require 3p bytes for the directory, 2s+ i to represent the addressand s+ i to represent their date of birth and name; in total: 3p+ 3s+ 2i.The parent objects require an additional i+ 2p bytes to store the directory forthe set attribute and 3(3p+3s+ i) bytes storage for the spouse and both childrensubobjects.Thus storing the whole data base consisting of the four person objects requiresa total of 4(3p + 3s+ i) + 2(2p+ i+ 3(3p+ 3s+ i))) = 34p+ 30s+ 12i bytes.For disk resident data bases FSM is e�cient if complete objects are the unit ofmanipulation. For memory resident data bases the main advantage stems fromthe fact that no joins are required to reconstruct an object, because all object

34 CHAPTER 4. THE GOBLIN STORAGE MODEL
kids

John Doe Address Spouse

DS #S D DS DS

kid[2]kid[1]

"Jane Doe"

"John Doe"

"Jane Doe"

Data part

"42 st."

"New York"

1239

829128

829109

"Tom Doe"DS DS

Directory part

Figure 4.3: The FSM storage modelattributes are stored within a single physical record. The join is essentiallyprecomputed.Furthermore, the 1-1 correspondence between the conceptual and physicalrecord, facilitates the compilation of queries using conventional compilation tech-niques.The drawbacks of this storage model become apparent when object sharingand object structure updates are considered. Subobjects, like the children tomand alice from the example, are contained in the physical record of their parentobjects. If the subobjects are shared, they have more than one parent andconsequently it is not obvious where the subobjects must be stored (See Section4.2.2).Handling object sharing by a replication technique introduces storage andupdate overhead to keep the replicas consistent. If, on the other hand, the elec-tion technique is used, additional dereference operations are introduced, therebyeliminating the initial advantage of FSM for e�cient manipulation of completeobjects.The properties of an object can change. For instance new attributes can bede�ned or a set valued attribute can be extended beyond its initial size. Becauseeach physical record contains all the subobjects reachable from the stored objectroot, modi�cation of the object properties often requires a reorganization of thephysical record layout. Furthermore, programs which are based on the old recordlayout must be recompiled for the new record structure.4.3.2 Normalized Storage ModelIn the normalized storage model (NSM) a complex object is decomposed intoa set of records containing only atomic values or surrogates. In particular eachset of objects corresponds to a normalized relation. Similar to FSM, each recordcontains a directory to store the �eld o�set for each attribute.Under this approach, updates on shared objects or modi�cation of set-valuedattributes can be performed without the shortcomings of FSM. However, accessto subobjects or retrieval of the complete object requires join processing. Itshould be noted that this access cost can be reduced by maintaining join indices[Val87].

4.3. OBJECT STORAGE MODELS 35
Record

Person

Record

Person

Record

Person

Record

Person

Record

Address

Record

kid[2]kid[1]kids

Set of Person

John Doe spouseaddress

S
D

SS S D S D

S D S D S D

Figure 4.4: The NSM storage modelA prime disadvantage is again that modi�cation of the object properties re-quires reconstruction of the record, but, contrary to FSM part of the objectneeds reconstruction. As subobjects can be shared, the old record can not besimply deallocated. To avoid dangling object references from the parent objects,a tombstone should be left at the memory location, which refers to the newrecord [LSL92].Example 4.4 Continuing our example, under NSM the person object is repre-sented by the records shown in Figure 4.4. Basically all the subobjects are rep-resented by separate records. The person objects tom, alice, jane and johnare represented by separate person record structures. Furthermore, they ref-erence each other either directly, or through a record structure presenting theset-of-person object kids.The NSM data model uses the same directory structure as FSM. However, assubobjects are stored separately, the total storage cost is much less than in FSM.A person object now only contains references to its subobjects spouse, addressand kids. The total storage requirement for the example data base is therefore:one address record of (p+2s+i) bytes, four person records of (5p+s+i) bytes,and one set-of-persons record of (3p+i) bytes, giving a total of: (24p+6s+6i)bytes.4.3.3 Decomposed Storage ModelIn the decomposed storage model (DSM) each attribute is mapped onto a binaryrelation and each value is associated with the surrogate of its conceptual tuple orset. Similar to NSM, DSM has the advantage that shared objects are stored onceonly. Furthermore, the storage requirements for DSM are not necessarily largerthan for NSM. In DSM each attribute value requires the storage of a surrogate,while in NSM storage is required in the directory to record the �eld o�set of theattribute value or to represent a NULL value.Furthermore, whereas in NSM it is possible to access an atomic attribute

36 CHAPTER 4. THE GOBLIN STORAGE MODEL

Saddress

"42 st"

1239

number records

street records

name records

Salice

Sjohn

Sjane

Stom

Salice

Sjohn

Sjane

Address Class

Saddress

Stom

Salice

Saddress

Saddress

Saddress

Saddress

address records

Stom

age record

Sjohn

Sjane

Stom

Salice

29

27

3

4

Sjane

Sjohn

city records

"New York"Saddress

"Alice Doe"

spouse records

Sjohn

Sjane

Sjane

Sjohn

"Tom Doe"

"Jane Doe"

kids records

Sjohn

Sjohn

Sjane

Sjane

Stom

Salice

Stom

"John Doe"

Salice

Person Class

SaddressFigure 4.5: The DSM storage modelvalue simply by using its o�set in a record, in DSM a lookup operation must beperformed to retrieve the attribute requested. Hash-based join indices can bemaintained to speed up this processing.Example 4.5 Using DSM, the Person and Address objects will be completely de-composed in a set of binary relations. The surrogates are used to maintain thestructural relationships between the object attributes. Each attribute is repre-sented by a relation. The special surrogate Sanchor identi�es the anchor pointof the data and is merely used to encode that Sjohn is a valid object stored inthe data base. Null values do not have to be recorded because class membershipimplicitly determines the type structure. The DSM storage model is illustratedin Figure 4.5.In the DSM model the records store simply (oid, value) associations. Theaddress record is thus stored in three binary associations (oid, city) , (oid,street), and (oid, number), requiring a total of 3p + 2s + i bytes. Similarly,the person object is represented by 5 associations. The kids set-valued attributeis also represented by a binary relation associating parents with their children.Note that contrary to DSM and FSM non-existing associations do not requirestorage. Thus the non-existing spouse and kids associations of the children donot contribute to the total storage requirement.The storage requirement for a parent and a child is 8p + s + i and 4p + s +i, respectively. The kids association requires an additional 4p. Thus the totalstorage requirement is 27p+ 6s+ 5i.Notice that the storage overhead is limited to 3p compared to NSM and thatthe number of kids is implied by the representation. If the number of optionalattributes increases, the storage requirement for the DSM scheme is even lessthan for NSM.

4.3. OBJECT STORAGE MODELS 374.3.4 Other storage modelsFor completeness we will mention two hybrid models. On the basis of FSM,DSM and NSM two hybrid models have been de�ned: Partial Decomposed Stor-age Model (P-DSM) [VKC86] and Partial Normalized Storage Model (P-NSM)[HO88].P-DSM is a combination of NSM and DSM. It vertically partitions an objectsuch that attributes used together frequently are stored in the same �le. Oftenthe attributes are associated with the surrogate of the tuple or set of which it isa part. P-NSM can be seen as a combination of FSM and NSM. In this approachan object is vertically partitioned, such that complete subobjects are stored inthe same �le.These storage models o�er the possibility to combine the advantages of bothschemes and to tune the database partitioning to a certain query mix (See forinstance [TF82][pages 201{224]). Obviously, for highly dynamic workloads thisapproach is not suited. As these models are derived from the basic storagemodels we will not discuss them in further detail.4.3.5 Storage model comparisonBoth the NSM and DSM approach can express object sharing in their storagemodel. In NSM the unit for clustering is the collection of atomic attributes withtheir surrogate, which is simply its object identity. In FSM object sharing iscumbersome and it can only be implemented by data replication or using anelection strategy.DSM o�ers the best support for dynamically changing objects. In the NSMand FSM approach adding new attributes to an object requires a complete stor-age reorganization, because the mapping of attributes to record �elds is �xed atobject creation time. Consequently, when an attribute is added to the object anew record layout must be determined for both approaches. Adding elements toa set valued attribute is cheap in both NSM and DSM, but possibly requires arecord reorganization in FSM.Furthermore, DSM has the advantage that selection of storage techniques canbe done independently for each attribute, eg. �xed or variable sized record �eld.In NSM and FSM, where many attributes are stored together, these decisionsstrongly interact. Similar arguments hold for indexing and data compression.Judging from the storage requirements for the example data base we concludethat DSM and NSM require far less storage than FSM. DSM has the addedadvantage over NSM that unde�ned associations (eg. an unde�ned kids orspouse attribute) do not require storage at all. Thus even though intuitivelythe DSM approach introduces more storage overhead than NSM by duplicatingthe oid of an object for each of its attributes, we learn from this example thatthis is not a rule and basically depends on the number of optional attributevalues.For class B and C queries DSM shows a better performance in disk-residentdata bases [VKC86]. As I/O cost is the main cost factor in these systems it isnot possible to carry the same conclusions over to memory-resident systems.The high maintenance and reconstruction costs for DSM do not apply to a

38 CHAPTER 4. THE GOBLIN STORAGE MODELFSM NSM DSM OOPLshared objects { { + + ++object evolution { { { ++ {declustering { + ++ { {storage overhead { { + + +class A workload ++ + { ++class B workload { + ++ �class C workload + + + +Table 4.1: Summary of the qualitative storage model comparisonmain-memory system, because these extra costs are far less prohibitive thanfor disk based systems. We feel that a well-designed main-memory based DSMsystem should at least provide the performance of an NSM-based system. Thereason is that at the lowest implementation level in NSM each attribute of a
atobject can be represented by a single pointer and a (mostly) �xed o�set. DSMmerely requires a register �le to denote the object components. However, it isclear that DSM favors class B queries and NSM and FSM favor class A queries.DSM provides better opportunities for load balancing than using NSM orFSM. If the attributes of a single object are accessed frequently, DSM can spreadthe attributes of the object over several processors. This is not possible withNSM, where the unit of allocation is a single (sub)object.Furthermore, in a distributed setting where semi-join operations are exten-sively used to reduce data transport, DSM does not require an expensive pro-jection operation as with NSM.The qualitative comparison of the three storage models introduced so far:FSM, NSM and DSM, is summarized in Table 4.1. We have also included anobject oriented programming language (OOPL) in this comparison.4.4 Goblin storage modelThe approach taken in Goblin is to pursue the DSM track further with a focustowards a main-memory implementation and a loosely coupled multiprocessor.The rationale behind this choice stems from the disadvantage of �xing a singlestorage structure, |to deal with aggregate types only|, from the outset of aDBMS implementation. It means that extensibility at the lower system level issacri�ced a priori for initially good performance.Rejection of the NSM approach is a direct consequence of its disadvantages(=advantages of DSM) and the feature of Goblin to permit users to add at-tributes to objects on an individual basis. Using the NSM approach wouldrequire continual data-base re-organization or an implementation that claimsstorage space for all possible attributes of an object from the outset.Furthermore, a DSM approach is more e�cient in a distributed environment,where semi-join operations do not require expensive unpacking of an NSM stor-age structure.

4.4. GOBLIN STORAGE MODEL 39Therefore, the Goblin storage management scheme is a DSM-like implemen-tation which allows extending the set of basic types by de�ning a minimal set ofstorage management functions. The details of our storage management schemeare elaborated upon in the subsequent sections.4.4.1 Storage model overviewThe Goblin storage model is divided into four layers: the schema layer, thesummary layer, the data layer and the storage layer.The schema layer manages the intentional data, which describes for each classits type structure, the applicable methods, and the class constraints.The summary layer administrates the data fragmentation and distribution.The binary relations are declustered into fragments and allocated on the pro-cessors available. This information is maintained for each binary relation in aRedistribution Association Table or RAT. The information is organized as an or-dinary relation2. This approach has the advantage that the relational operationscan be used to determine the fragments that participate in a query. Actually, aswill be shown in Chapter 7, it is possible to simulate the query �rst against thesummary data stored in the RATs, before distributing the query subtasks.The data layer manages the binary relation fragments. The fragments of thebinary relations are stored in binary associations tables or BATs. They form theunit of allocation and processing. A set of relational operations is de�ned forBATs, which is powerful enough to support the Goblin query language.The storage layer is formed by the Global Persistent Object (store) (GPO).This layer provides bu�er management and persistent storage in a distributedenvironment. Furthermore, it o�ers primitives for transaction management andconcurrency control.4.4.2 The schema layerThe data-base schema describes the type, methods and constraints for the classesmaintained by the DBMS. This information is primarily used for type checking.Either a static of dynamic approach can be followed to maintain the schema.In the static approach the data-base de�nition is compiled into the programs,i.e., the knowledge of the structure, methods and constraints is embedded inthe program code. This results in fast programs at the cost of redundant ad-ministration storage. It is also highly in
exible, because the description of thedata is kept separate from the data itself (e.g. in program header �les). Thismeans that schema updates requires program location and recompilation and itbecomes di�cult to write a generic program to process an arbitrary object.Alternatively the schema information is kept with the objects (e.g. Smalltalk).This allows for modeling
exibility, because each object can have a di�erent type.The prime disadvantage is the storage overhead of type information with eachdata element. Moreover, it incurs processing overhead to repeatedly type checkoperations against individual objects.In a data-base environment a more reasonable approach is to factor out thetype information for bulk data. This corresponds to explicitly storing both ob-2represented by BATs

40 CHAPTER 4. THE GOBLIN STORAGE MODEL
Tuple

type
Set

type

Atom type

T={B,I,F,S}

T

Function

MethodConstraintType

specification

defined

as

(attribute name)

sub-object/

attribute

sub-class

Class

specification

Figure 4.6: Legend for the schema graph componentsject relationships and access information. The former is used to type checkoperations, while the latter is used for access to bulk data. This means losingsome of the
exibility of dynamic typing, but it also greatly reduces the stor-age and interpretation overhead. By \bulk" processing a high performance isattainable.In Goblin we focus on the third approach, i.e. factoring out type informationfor bulk data only, because operations on bulk data provides a good handle onparallel query processing.The schema layer is administered by the Class Administration Tables (CAT).The CAT is actually a directed graph, where the nodes correspond to the typeconstructors, atomic types, methods, functions and constraints, described by thedata model. The edges de�ne the relations between the nodes. This can be aninheritance or subclass relation, or an IS-PART-OF relation. The inheritanceedges describe the relations between class speci�cations and the subobject edgesare used to de�ne the type structure. For instance, a tuple type node is con-nected through labeled edges with its subobjects. Figure 4.6 gives a graphicalpresentation of the graph components.Example 4.6 To illustrate the schema layer we give a graphical presentation ofthe Person and Employee class speci�cation as described in the previous chapter(See Figure 4.7).Note that the implicit inheritance relation between the most general classObject and Employee and Person is included in the schema.Associated with each edge is a reference to its extent. In Goblin, it is areference to summary information about the extent to be described next.4.4.3 The summary layerThe Goblin summary layer serves as an access path to the partitioned data-baseextent. To support distributed query processing each binary relation is a priori

4.4. GOBLIN STORAGE MODEL 41
TYPE

age

move

raise

Person

Object

WORK

PERSON

Employee

WORK

S I

company salary

ADDRESS

S

I

S

street

number

city

PERSON

PERSON

kids

spouse

I

ADDRESS

name
S

dob

address

PERSONFigure 4.7: The Employee and Person schema de�nitiondeclustered into fragments and allocated on distinct processors. Each fragmentis mapped on a physical partition. In the query processing phase the fragmen-tation information is used to direct query requests on the conceptual binaryrelations to the actual stored partitions. Basically there are three approaches tostore the fragmentation information: reconstruction rules, fragmentation rules,or fragment data.A reconstruction rule expresses how the relation can be reconstructed from itsfragments. For horizontal fragmentation this rule is simply the union of all thefragments. During the query translation process, view substitution can be usedto transform the query on the relation into a query on its fragments. The maindisadvantage of this approach is that not enough fragmentation information isavailable to use for query optimization. For each query all the partitions of arelation must be accessed.Fragmentation rules represent an opposite approach. These rules store thefragmentation information. For hash-based fragmentation it su�ces to store thefragmentation attribute and the number of fragments. Using a default namingscheme for the fragment relations, the query optimizer can translate the queryinto a query over the fragments and exploit the fragmentation information. Forrange-based fragmentation the fragment constraint must be maintained for eachfragment. To exploit this information, however, the query optimizer must havea semantic query-optimization capability [vK93].The �nal approach records fragment data in a summary data base, whichcontains for each fragment attribute its value range. This approach enables

42 CHAPTER 4. THE GOBLIN STORAGE MODELto perform semantic query optimization by simply executing the query �rston the summary data base, thereby eliminating those fragments, or fragmentcombinations, that do not contribute to the query result.This method is not limited to a particular fragmentation scheme. For range-and count-based fragmentation, the attribute ranges are stored in the summarydata base. For hash-partitioned data the hash value for each fragment is main-tained.The summary data base can be considered as a general and
exible indexingmechanism. Running the query �rst against the summary data base reduces thesearch space considerably, especially if the binary relations are partitioned onboth attributes.In Goblin the partition information is maintained in a summary data base.This decision is based on the following observations:� A common technique in distributed query processing is to perform selec-tions �rst. Performing the selection operation �rst on the summary database, reduces the amount of processing required in the following stages.� Join processing on fragments requires communication. Performing a joinoperation �rst on the summary data eliminates fragment combinations thatdo not contribute to the query result, and, thereby, reduces the amount ofcommunication.� E�cient equi-join processing is achieved if the join attribute is range par-titioned. However, e�cient theta-join processing is not possible for hash-partitioned relations.� The overhead for running a summary query depends on the ratio summarydata and data-base size. This ratio and therefore the overhead, can becontrolled by adjusting the fragmentation degree.The summary data is maintained in Redistribution Administration Tables(RAT). Each binary relation has a RAT to store the fragment identities (hbid andtbid), and the minimum and maximum values for its �rst and second attributehmin,hmax and tmin and tmax, respectively. The fragment identity is includedtwice in the summary relation so that after joining two summary relations, thefragment identity of both source relations is kept in the resulting relation (Seefurther on). The fragment allocation information is stored separately as theycan be replicated and stored on multiple sites.Example 4.7 The name attribute of the Person class is maintained in a binaryrelation. It records the association between tuple objects and strings. Table 4.2shows the summary relation Name[hbid,hmin, hmax, tbid, tmin, tmax] ifthis relation is partitioned into 5 fragments; each one stored in a BAT partition.Summary query processing resembles traditional query processing, but re-quires a rede�nition of the relational operations to use the fragmentation in-formation. To support the summary query process the �nd, select, equi-joinand theta-join operation are modi�ed to use the fragmentation information. Itdepends on the fragmentation method, whether the summary information can

4.4. GOBLIN STORAGE MODEL 43hbid hmin hmax tbid tmin tmax1 00000 12763 1 \Abiteboul" \Bergsten"2 20000 32515 2 \Bodorik" \DeWitt"3 40000 52109 3 \Eich" \Hafez"4 60000 78198 4 \Hornick" \Khosha�an"5 80000 99999 5 \Kim" \Yu"Table 4.2: The RAT for the name relationRelational Range Hash Descriptionoperator partitioning partitioning�vR ~�v ~R (4.1) �v �R (4.6) �nd tuples matching value�[l;h]R ~�[l;h] ~R (4.2) n.a. range selectionR 1 S ~R~1 ~S (4.7) �R1 �S (4.3) equi-joinR 1� S ~R~1� ~S (4.4) n.a. theta-join, � 2 f<;�;�; >gTable 4.3: The main RAT operations (n.a. = not available)be used. To distinguish these operations from the common set of operations weuse the symbols ~�v, ~�[l;h], ~1, ~1� and �, 1 for range partitioned data and hashpartitioned data, respectively. This is summarized in Table 4.3.4.4.4 Range partitioningFor range partitioned relations these operations can be expressed in relational ex-pressions on the summary relations. Essential in this translation is the de�nitionof equality. For range-based partitioning two ranges are \equal" if they overlap.Given two summary relations for R and S, ~R[hbid; hmin; hmax; tbid; tmin; tmax]and ~S[hbid; hmin; hmax; tbid; tmin; tmax], respectively, and equality as de�nedabove, we arrive at the following de�nitions for the relational operations on thesummary relations.~�v ~S = ft 2 ~Sj ~S:tmin � v � ~S:tmax)g (4.1)~�[l;h] ~S = ft 2 ~Sj ~S:tmin � h ^ l � ~S:tmax)g (4.2)~R~1 ~S = �A(~R 1C ~S) (4.3)where: A = [~R:bid; ~R:hmin; ~R:hmax; ~S:bid; ~S:tmin; ~S:tmax]C = (~R:tmin < ~S:hmax ^ ~R:tmax > ~S:hmin)~R~1� ~S � �A(~R 1C ~S) (4.4)where:

44 CHAPTER 4. THE GOBLIN STORAGE MODELA = [~R:bid; ~R:hmin; ~R:hmax; ~S:bid; ~S:tmin; ~S:tmax]C = 8>><>>: (~R:tmax < ~S:hmin) if � = " < "(~R:tmax � ~S:hmin) if � = " � "(~R:tmin � ~S:hmax) if � = " � "(~R:tmin > ~S:hmax) if � = " > " (4.5)4.4.5 Hash partitioningFor hash partitioned data equality is de�ned on the hash value. Consequently, noequivalent expressions exist for the range selection and theta join operation otherthan the identity operation and the Cartesian product, respectively. Given twosummary relations �R[hbid; hhash; tbid; thash], �S[hbid; hhash; tbid; thash] and thehash function hash, we arrive at the following operations on the summary datafor the equi-join and �nd operation.�v �S = ft 2 �Sj �S:thash = hash(v)g (4.6)�R1 �S = �A(�R 1C �S)where � A = [�R:bid; �R:hhash; �S:bid; �S:thash]C = (�R:thash = �S:hhash)The detailed discussion on construction and processing of summary queriescan be found in Chapter 6. In the current implementation the RAT relationsare mapped on binary relations, enabling an implementation using BATs. Thefollowing section describes the issues involved in the design and implementationof the data layer.4.4.6 The data layerThe main task of the data layer is to manipulate and store the fragments ofbinary relations, which are stored in Binary Association Tables or BATs. TheBAT corresponds to the notion of partition as presented in Section 4.2. The twoattributes stored in a BAT are referred to as head and tail.The head and tail attribute type can be any of the base types (fbool,int,str,oid,floatg), but is �xed for the BAT at creation time. This has the ad-vantage that type checking, o�set calculation, and selection of the routines tocompare, access and store the attributes needs to be done only once for bulkoperations, thereby avoiding run-time overhead. The set of base types can beextended by de�ning six routines to manipulate elements of that type. Thisinterface forms part of the ADT facility and is not further discussed.The BAT interface is divided into �ve groups of operations: BAT creation,BUN manipulation, iterators, relational operations and transaction manage-ment.4.4.6.1 Data de�nitionAt creation time the programmer speci�es the basic BAT properties. This con-sists minimally of the attribute types. Initially, the BAT is given a system

4.4. GOBLIN STORAGE MODEL 45generated unique name, which is used by the summary layer to identify theBAT. Furthermore, the behavior of the operations can be in
uenced by speci-fying that an attribute has a key property, so that each value must be (locally)unique. Finally, the user can specify for individual attributes that a hash- orcomparison based index must be maintained. In most cases, however, the BATwill construct indices dynamically before the execution of a relational- or sort-operation that will bene�t from index support.4.4.6.2 Data accessThe BAT contains a number of �xed-size slots to store the binary associations.These slots are called BUNs. A BUN variable is a pointer to the storage areaof the BAT. The BAT implementation allocates the BUN slots contiguously, sothat iteration over the available BUNs can be performed cheaply. Consequently,after a BAT update, previously retrieved BUNs may not longer refer to the samerecord slot.After creation, the BAT can be �lled either by loading the BAT from diskor through insertion of individual head-tail attribute pairs. The BAT interfaceprovides operations to manipulate these BUNs. Next to BUN update operations,a search operation and operations to access the head and tail attributes of theBUN are available.In some cases, for instance after sorting the BAT contents, all BUNs or asubrange of them need to be accessed sequentially. For this purpose, the BATinterface provides an iterator mechanism, which accesses the stored BUNs in suc-cession. The iterator construct also serves as the building block for the relationaloperations, which often require iteration over an attribute range.4.4.6.3 Relational operationsThe BAT interface o�ers the ordinary set of relational operations, like the set op-erations, the select operation, equi-join and theta-join operation. Furthermore,two special operations are provided to support the query processing scheme:semi-join, mark and remark. All operations produce a binary relation. For thejoin operations the join attribute is omitted from the result. This approach hasthe advantage that the relational operations have to consider binary relationsonly and can be implemented e�ciently. An obvious disadvantage is that thejoin attribute is lost in the process and potentially it has to be recovered througha semi-join operation later on in the QEP.The DSM model also leads to frequent semi-join operations. Namely, eachtuple attribute is represented by a binary relation, where the head attributecorresponds to the tuple identity (oid) and the second attribute represents theattribute value. After a selection on a tuple attribute, the semi-join operationon the oid of the tuple is used to reduce the binary relations for the remainingattributes.The mark operation is used to invent unique object identi�ers to representquery results. Similar to the permanent objects, query results are also repre-sented using DSM. Each object represents a combination of objects from the

46 CHAPTER 4. THE GOBLIN STORAGE MODELdata base that satis�es the structure, behavior and state constraint speci�ed bythe query. The mark operation gives a name to the individual combinations.The remark operation is a variant of the mark operation. It assigns uniqueobject identi�ers to the tuples of its operand, but contrary to the mark operationit returns two binary relations; one for each attribute.4.4.6.4 Transaction managementThe BATs form the unit for allocation, locking and recovery. Operations areprovided for transaction management and concurrency control. For transactionmanagement, the BAT interface implements the local part of the two- phasecommit protocol, and consists of operations to begin, precommit, abort or com-mit a transaction. For concurrency control the primitive operations consists ofrequests for read-only and exclusive locks. Although these operations are pro-vided by the BAT interface, they are implemented by the storage layer, whichprovides the data layer an interface for creating and manipulating global persis-tent objects.4.4.6.5 Implementation considerationsSince BATs model binary associations, there are only a limited number of im-plementation strategies. Namely, a component of the association can be storedexplicitly or implicitly. This leads to the following implementation schemes:� (implicit, explicit) or (explicit, implicit), which is closest to an array-likeimplementation, where the location of a value is calculated from the oneof the attributes;� (implicit, implicit), which describe a pure functional association;� (explicit, explicit), which is used to support a non-predominant accesspattern.Within each scheme there are ample opportunities to further optimize towardsCPU processing or storage cost. For example, for sparse domain and range ofan association an (explicit,explicit) scheme can be augmented with two searchstructures to obtain a fast retrieval and minimal storage.Goblin does not insist on a single storage method for a particular BAT. As longas two implementations provide the same interface, they can be interchangedfreely. One of our main goals is to hide these alternative implementations behindthe BAT interface description and to exploit the di�erences as best as possiblewithout interference of the user. That is, Goblin adapts the implementationusing statistics about BAT usage.The adaptive algorithm lets the BAT automatically select among the internalrepresentation that is best under the given circumstances. Therefore, each BATimplementation includes cost functions to help making decisions. In particular,the BAT programmer should supply storage-, search-, and transport- costs func-tions. Balancing the requirements is captured by a single adaptation routine,which is time-, query-, update-, or user- triggered. Once called, it compares

4.4. GOBLIN STORAGE MODEL 47

area

heap

area

free

slots/BUNs

record

descriptor

BAT

Figure 4.8: The BAT memory layoutthe weighted cost of the current implementation against the bene�ts of an al-ternative representation. If needed, it will convert the BAT to its new storagestructure. It may also decide to keep multiple incarnations around to satisfycon
icting usage patterns at the cost of additional update overhead.Currently, only the (explicit,explicit) scheme is implemented, which createsindices at run time to speed up the relational operations. The algorithms ofmost binary operations are hash-based and they �rst construct a hash indexon one operand. This hash-index is then retained until it is invalidated by anupdate operation. Consequently, most operations have signi�cantly di�erent hotand cold execution times. For instance, the cold and hot execution times ofjoining two 10k binary relations are respectively 120 ms and 90 ms3.The memory layout of the BAT is depicted in Figure 4.8 and consists of threeareas: a descriptor, a �xed size area of record slots and �nally a heap space.The descriptor records the current state of the BAT, which consists of its name,the attribute types, the available indices, information on the average attributevalue size and the cardinality. Furthermore, the descriptor maintains pointersto identify the �rst free record slot and the top of the heap area.The record slots store the �xed size BUNs. For variable sized attribute values,for instance strings, the BUN contains a reference to the string, which is allocatedin the heap area. To facilitate BAT relocation or storage on disk, references arerepresented by o�sets relative to the BAT address.4.4.7 The storage layerThe previous sections have been focussed on object and schema representation,partitioning and access structures. BAT persistency, stability and consistencyare not addressed by the schema, summary, and data layer. For these issues we3Measured for the Goblin kernel V2.0 on a SGI R3000/Irix 4.05 running at 33Mhz

48 CHAPTER 4. THE GOBLIN STORAGE MODEL
BAT cacheBAT cache

BAT Buffer Manager

BAT requests BAT requests BAT requests

Query Process Query Process Query Process

Processor 2

BAT requests BAT requests BAT requests

Query Process Query Process Query Process

Processor 1

BAT Buffer Manager

Figure 4.9: The storage layerpartly rely on the evolution of �le systems for distributed operating systems. Webelieve that novel operating systems o�er transaction management primitives,use replication techniques to increase availability and stability, and perform loadbalancing for coarse grain objects (i.e. �les). In the current implementation thisfunctionality is implemented by a separate storage management process, as it isnot yet o�ered by the Amoeba or IRIX operating systems.On each processor there is a BAT Bu�er Manager or BBM, which managespart of the collection of BATs. The BBM layer o�ers a mechanism for creating,updating, and destroying globally accessible and persistent objects in generaland BATs in particular. Furthermore, basic transaction support functions areprovided.The BBM stores the global persistent BATs in a local memory bu�er andcontrols its contents. Its task can be compared to that of the bu�er manager indisk based systems. The main di�erence is that if a BAT is not locally available,this results in retrieval of a copy of the BAT from another BBM process insteadof from disk.The BBM uses a bu�er replacement policy that favors frequently used objectsin order to reduce the number of bu�er misses. As the Goblin Query Schedulerhas an overview of what data is required on each processor, the BBM o�ersprimitives to control the bu�er replacement policy. The global setup is depictedin Figure 4.9.An e�cient method for obtaining persistency in main-memory data-base sys-tems is achieved by using stable memory for maintaining the log records andusing disk to store the latest checkpoint [LC87]. Alternatively, persistency anddata consistency of BATs can be achieved e�ciently through data replication ifthe following conditions are satis�ed:� Network partition failures do not occur. As the Goblin project goal isrealization of a parallel DBMS, instead of a globally distributed DBMS,the processors are interconnected through a dedicated, reliable network(In the prototype a single ethernet connection). In the event of a network

4.4. GOBLIN STORAGE MODEL 49failure all processing is delayed at the cost of decreased availability untilthe network is up again.� The number of simultaneous site failures does not exceed the replicationdegree of BAT. The probability of information loss can be reduced to anacceptable level given the probability of a site failure at the cost of memoryconsumption and speed of data updates.The direct consequence of these assumptions is that the replication controlalgorithm, which maintains the one-copy-serializability property, can be basedon the simple read-one-write-all-available (ROWA) protocol. Quorum basedalgorithms do not have to be considered, because network partitions are notassumed.The prime target of a persistent storage layer is to maintain global data-base consistency despite system failures. The storage layer design requires ananalysis of the di�erent causes resulting in a transaction failure. Given theGoblin architecture the possible causes are an application abort or a site failures.An application abort is generated by a user interrupt or generated by the ap-plication code. The detection of such a failure is therefore straightforward. Theabort will be reported to the process, which coordinates the global transaction,which will then initiate a global abort procedure. The BBM storage layer thenundoes all the updates made by the application and rolls back to the previousconsistent state. This roll-back functionality is provided by the BAT interface.A site failure is the result of a bug in the application software or systemsoftware, or the result of a hardware problem. Such a failure is detected bythe BBM layer, when it fails to update or access a replica on a remote site.This kind of error should be detected before a data request is made becausemultiple site failures could remain undetected. If a site failure occurs while atransaction is in progress, the transaction is aborted. Furthermore, to maintainthe minimum replication degree the data which were stored on the the crashedsite are distributed over the remaining sites. Thus one of the replicas becomesa primary copy. When the crashed site recovers, it will gradually absorb datathrough data migration.BATs, which partake in a global transaction are updated atomically usinga 2PC4 protocol. Each transaction is assigned a unique identi�er, which isthen used to store the recovery information of the objects. The global commitor abort decision is recorded and propagated to all sites. (As the global logmaintaining the transaction status is also a globally accessible persistent object,the same mechanism as for ordinary objects is used to store the transactionadministration.)During its lifetime, a globally unique identi�er is associated with a BAT. BATsare referenced by this identi�er. If a BAT is not present in the local bu�er, it isretrieved from another site using its identi�er.BATs can be moved or copied by the BBM layer from one processor to another.To transport the BAT it has to be converted to a representation, which does notuse local memory addresses. This functionality is o�ered by the marshal routine4two phase commit

50 CHAPTER 4. THE GOBLIN STORAGE MODELprovided by the BAT interface, which converts the BAT to a byte sequence. Theroutine unmarshal converts the byte sequence to its BAT representation.The basic mechanism for obtaining BAT persistency in Goblin is replication.To keep the replicas consistent with each other, the replicas need to be updatedif one of them is changed. Replicas are updated by only transmitting the recentupdates, which are maintained by the BAT. Replicas can then be updated bysending the log to the replica and replaying it on the BAT replica with a logredo routine. In case of a transaction abort the updates can be undone with thelog undo routine. The log must therefore also contain the old values.4.5 ConclusionThis chapter discussed the alternative storage models for object representationin a main memory context. Many of the issues discussed are similar to those forNF2 relations, like clustering and declustering. We have, however, also discusseda few issues that are typical for object oriented systems, like object sharing andobject dynamicity.Given the assumptions on Goblin applications, the decomposed storage modelbecomes the prime choice, because it allows an e�cient support of object sharing,and object updates, and still has low storage overhead.Finally, the design of the Goblin storage model was presented. The binary re-lations resulting from the DSM approach are a priori partitioned into fragments,which are declustered over the available processors. A novelty in this approachis the use of a summary data base. This data base allows query processing tobe performed in two phases. The �rst phase runs a query on the summary database, and serves as a dynamic optimization step by selecting fragment combina-tions, which potentially contribute to the query result. These fragment combi-nations are executed in the second phase. In a distributed system, however, thisevaluation can be performed in parallel.

Chapter 5Dynamic Query Processing
5.1 IntroductionStatic query processing schemes (SQP) as described in Chapter 1 generate a sin-gle query evaluation plan (QEP), taking optimization decisions on the basis ofthe statistics available at compile time. Thus, the query schedule and allocationtopology of subqueries to processors is �xed for the duration of the query evalu-ation. This often leads to a suboptimal execution due to unreliable or outdatedcost estimates or to an impractical exploration of the space of feasible QEPs. Inthis Chapter we introduce an alternative processing technique called dynamicquery processing (DQP) as a possible solution to this limitation.The prime objective of the DQP scheme is similar to those of the SQP schemes.Namely, minimization of the query response time, not only for queries run in iso-lation, but also for a workload of concurrent running queries. The DQP schemeis an alternative to achieve these goals in view of two important problems inparallel query processing: coming up with a reliable estimate of intermediateresult sizes and predicting the load distribution accurately for the run-time ofthe query. These problems are tackled in a DQP architecture with two mecha-nisms: a feedback mechanism to reduce the amount of work and a load balancingtechnique to avoid congestions in query pipelines.In a DQP scheme some of the optimization decisions are taken at query pro-cessing time on the basis of the feedback information. An abstract DQP archi-tecture consists of two components: a Query Scheduler and a Query Evaluator(See Figure 6.1). The Query Scheduler controls and drives the query executionby constructing query evaluation plans.Each QEP is subsequently executed by the Query Evaluator. This component51

52 CHAPTER 5. DYNAMIC QUERY PROCESSING
Application

Data

Query

Scheduler

Query

Evaluator

Query Evaluation Plans

Evaluation Feedback

Query resultQuery request

Data

DictionaryFigure 5.1: The general DQP architecturecan actually consist of several processes which can either evaluate several QEPsin parallel or use pipelining and data parallelism to execute individual QEPs inparallel.At speci�c points in the execution of a QEP the Query Evaluator sends feed-back information to the Query Scheduler. Such as information on the loaddistribution and intermediate result sizes observed. The Query Scheduler thendecides to keep the current QEP, or change it for the remainder of the query.The overall query evaluation strategy determines when information on the queryevaluation is feed-back.In the remainder of this chapter we discuss three alternative evaluation strate-gies for dynamic query processing. Thereafter, we give a short overview of re-lated work and, �nally, we describe the application of DQP to the Goblin parallelOODBMS. The detailed discussion of the Goblin query processing architecturecan be found in Chapter 6.5.2 Query evaluation strategiesAn essential characteristic of a DQP architecture is that a query is not processedin its entirety, but in subqueries or steps. After each subquery the query evalu-ation plan for the next subquery is re-considered. Therefore, the overall queryevaluation plan can be adjusted at run time to adapt to variations in the data-and load distribution. For this purpose important performance parameters, likethe sizes of intermediate results and the processor load are monitored and feed-back to a query scheduler. The scheduler can then optimize the query scheduleand allocation plan.An important issue in the design of a DQP is the processing granularity ofthese subqueries. If the granularity is small the level of control provided tothe Query Scheduler is large. The disadvantage of a small granularity is the

5.2. QUERY EVALUATION STRATEGIES 53devastating e�ect on the scheduling overhead, which eliminates the performanceimprovement from dynamic query optimization. The granularity can range fromthe individual operations, which introduce a lot of control overhead, to thecomplete query, which basically corresponds to the SQP scheme with a query-abort and re-run facility.Another issue is the query decomposition technique. There are two orthogonalapproaches for this. Basically, they correspond to the methods used for queryparallelization, namely pipelining and task spreading. In this context we adoptthe terms query step and data step to stress that the primary objective is not toparallelize the query, but to introduce control points in the query process, wherefeedback information on the execution is returned to the Query Scheduler. Thesemethods are brie
y discussed in the subsequent sections using a (simple) queryto illustrate the di�erences.Example 5.1 Given relations R, S, T and U we consider the following 4-wayjoin query:Q = R 1 S 1 T 1 U5.2.1 The query step approachThe query step approach divides the query tree produced by the parser intosubqueries such that they can be executed in a pipelined fashion. For dynamicquery processing, however, control operations are inserted at some points in thequery tree to direct the run-time optimization and load balancing. This operatortests whether the intermediate result size di�ers too much from threshold valuesset at query optimization time. In that case the remaining part of the query isre-optimized using the new information [BR88, Ngu81]. With this technique thesmallest granularity obtained is a decomposition into subqueries around a singlerelational operator.The advantage of this approach is that it can be applied to the standard SQPschemes. For instance, Graefe de�nes a choose-plan operator to insert controlpoints in a QEP [GW89]. At run-time this operator evaluates cost formulasto choose between alternative query evaluation plans. The disadvantage of thisapproach is that the alternative QEP are determined at query compilation time.Furthermore, it is di�cult to decide where to insert these choose-plan operatorsin the query tree. Adding too many choose-plan operators leads to large QEPsand reduce the amount of pipeline parallelism.Example 5.2 The query example can be evaluated using di�erent join orders.Which order to choose can best be determined at run-time after each join. Inthe following we assume that the optimizer produced two feasible join orders(R 1 S) 1 (T 1 U) and ((R 1 S) 1 T) 1 U . The scheduler takes the run-timedecision on the basis of the cardinality of the intermediate result T1 = R 1 S.On four processors this could lead to the following execution:site subqueryP1 T1 = R 1 S

54 CHAPTER 5. DYNAMIC QUERY PROCESSINGIf jT1j > threshold: site subqueryP1 T2 = T1 1 TP2 Q = T2 1 UIf jT1j � threshold: site subqueryP2 T2 = T 1 UP1 Q = T1 1 T2Note that in the evaluation only two of the four processors are used. Withoutthe control point this query could have been evaluated on three processors andexploit pipeline parallelism.5.2.2 The data step approachIn the data step approach the relations are partitioned such that the query isreplaced by the union of independent subqueries. These subqueries or tasks aresubsequently executed by the Query Evaluator. After each subquery executionthe Query Evaluator sends feedback information to the Query Scheduler. Thesmallest granularity is achieved when the partitioning degree equals the cardi-nality of the relations. In this case each fragment consists of a single tuple andthe subquery just test whether a certain combination of tuples satis�es the queryconstraint.The advantage of this approach is that the tasks can be executed in parallel.Furthermore, because the allocation of tasks to processors is not �xed at querycompile time and there are a large number of tasks, load balancing is easy toachieve.After each task evaluation, the Query Scheduler uses the feedback informationto reduce the number of tasks remaining, and in a parallel system to adjust thetask allocation.Example 5.3 The sample query is replaced by a large number of similar querytasks. If each relation is partitioned into two fragments and the query evaluatoruses four processors, then the query can be evaluated as follows:site taskP1 T1 = R1 1 S1 1 T1 1 U1P2 T2 = R1 1 S2 1 T1 1 U1P3 T3 = R2 1 S1 1 T1 1 U1P4 T4 = R2 1 S2 1 T1 1 U1P1 T5 = R1 1 S1 1 T1 1 U2P2 T6 = R1 1 S2 1 T1 1 U2P3 T7 = R2 1 S1 1 T1 1 U2P4 T8 = R2 1 S2 1 T1 1 U2
site taskP1 T9 = R1 1 S1 1 T2 1 U2P2 T10 = R1 1 S2 1 T2 1 U2P3 T11 = R2 1 S1 1 T2 1 U2P4 T12 = R2 1 S2 1 T2 1 U2P1 T13 = R1 1 S1 1 T2 1 U1P2 T14 = R1 1 S2 1 T2 1 U1P3 T15 = R2 1 S1 1 T2 1 U1P4 T16 = R2 1 S2 1 T2 1 U1

5.2. QUERY EVALUATION STRATEGIES 55Note that in the task assignment the fragment distribution is taken into ac-count. The tasks that are consecutively allocated to a processor change only in asingle fragment, which minimizes the I/O.5.2.3 Query restartIn this coarse method the query is evaluated as a unit and interrupted if a thresh-old speci�ed for a monitored resource is exceeded at run-time. The decision tore-consider the query plan at run-time results in a query abort, followed by thegeneration of a new query plan, and a restart of the query evaluation.The advantage of this scheme is that a large collection of query plans is consid-ered, because at each restart the original query is re-optimized using up-to-datestatistics obtained from the aborted query.The disadvantage is that when an interrupt occurs in the middle of an exe-cution, only partial information on intermediate result sizes can be feed-back tothe scheduler. Furthermore, intermediate results, if they exist, are not re-used.And �nally, it is not clear whether the performance gain from the improved QEPjusti�es the work invested in the �rst try.Example 5.4 For our query there exist many alternative query evaluation plans.Consider the �rst query evaluation plan to execute the query according to thejoin order (R 1 S) 1 (T JoinU). In this evaluation both pipelining and taskspreading is used to improve the response time. The join operations are executedin parallel on di�erent processors as follows:site subqueryP1 T1 = R 1 SP2 T2 = T 1 UP3 T3 = T1 1 T2The resource consumption is monitored during query execution. If it exceedsa compile time determined threshold, the query is aborted and the executioninformation is feedback to the scheduler.If it turns out that the cardinality of the intermediate result produced by T 1 Uexceeded a limit and caused the query abort, the query scheduler generates a newquery evaluation plan based on this information and restarts the query executionso that this join operation is performed last:site subqueryP1 T1 = R 1 SP2 T2 = T1 1 TP3 T3 = T2 1 UNote that the intermediate results are not re-used. Furthermore, only threeof the available four processors are used.

56 CHAPTER 5. DYNAMIC QUERY PROCESSING5.3 The Goblin approachThe DQP scheme presented in this thesis is based on the data-step approach.The relations are partitioned into fragments a priori. The query result is thenthe union over the subquery results for all fragment combinations. This choiceis motivated by considering that:� In the query step approach, misjudgements in the initial subquery eval-uation can not be undone, because the intermediate results are alreadygenerated. The e�ects are carried over to the remainder of the query.� The data step approach results in a large number of independent tasks.In a parallel system this increases the level of parallelism to be exploitedand it can easily be adjusted to match the requirements of the data baseapplication, such as the rate at which data can be consumed by the userprogram.� We use a main-memory system where the data is partitioned such that thetask can be executed in the memory of a single processor.An important concern in the design of this query processing scheme is thenumber of tasks. If the relations are partitioned in too many fragments, it leadsto a large number of task evaluations and schedule overhead.For instance if a relation Ri is partitioned into ni fragments then Qi ni similarsubqueries have to be evaluated 1. Given a large multiprocessor platform thesesubqueries can, in principle, be evaluated in parallel. However, the speedup willbe limited due to the speed by which the fragment data can be prepared ordistributed over the processor pool.Furthermore, sequential evaluation (or limited parallel evaluation) creates anopportunity for dynamic query optimization; it is possible to reduce the amountof work using statistics of previous query task evaluations and semantic knowl-edge of the query operations. In a system based on the query step, the individualsubqueries are generally not of the same form, in the data step approach theyare similar. Before presenting the Goblin query processing scheme in detail webrie
y address the related work on dynamic query processing.5.4 Related workThe two main aspects that in
uence the e�ciency of the query evaluation planare data distribution and load distribution. In a dynamic query processing ar-chitecture the query optimization scheme reduces the e�ects of data distributionvariations on the execution time and the load balancing scheme tries to adaptthe query process allocation to variations in the load distribution.The following two sections summarize the results from related work.1Depending on the query this number can be reduced by choosing a suitable partitioningfunction. For instance, using hash-based partitioning of the operands of an equi-join operationreduces the number of subquery evaluations to dn1h edn2h e, where h is the number of hashbuckets.

5.4. RELATED WORK 575.4.1 Query optimizationBodorik and Riordon [BR88] and Nguyen [Ngu81] propose a scheme based ona threshold mechanism. This scheme basically follows the query step approachwhere the query plan is corrected when the actual size of a partial result exceedsthe estimated size by a certain threshold value.Graefe and Ward [GW89] introduce the notion of Dynamic Query EvaluationPlans to solve the problem of producing query plans for parameterized queries.Query execution involves evaluation of a decision procedure for the actual queryconstants and the data distribution. Thereafter the components of an accessmodule are dynamically linked to obtain an appropriate execution plan. Theyprimarily focus on access methods, but their approach is also applicable to paral-lel query processing. Actually, in this approach the query evaluation plan is notadjusted at run-time, but the decision to choose an alternative query evaluationplan is delayed until query startup.Another approach is used in the XPRS shared memory DBMS. The queryoptimizer produces an optimized sequential QEP, which is parallelized at querystartup time. However, after query startup the QEP can not be changed.5.4.2 Load balancingLu and Carey [LC86] present a task allocation algorithm to balance the systemload and to minimize the communication cost. It shows that load balancingleads to signi�cant reductions in the average time a query task waits for I/Oand CPU resources.Murphy [Mur89] focussed on performance improvement for query executionon shared memory multiprocessors using a minimal number of processors anda limited amount of database bu�ers. The method is based on scheduling pagereads and page join operations e�ciently.Similar to the approach of Murphy, we consider query evaluation as a schedul-ing problem. First, the query is transformed into a query program, which solvesthe query for a portion of the database at a single processor. Second, the re-lations involved are partitioned into fragments. Finally, combinations of thesefragments form query tasks, which are executed on the available processors bya centralized scheduler. The query scheduler controls the load balancing andit performs logical query optimization using up to date information on querytask execution and the availability of fragments. Our dynamic query process-ing scheme aims at improved processing of pre-compiled parameterized queries,which exhibit large potential parallelism or none at all depending on the param-eter settings upon query execution.In a pilot study of our approach [vdBKSA91] we focussed on load distributionin this system. Speci�cally, we tried to identify the bottlenecks in the systemarchitecture through a simulation and a subsequent validation on the PRISMA100-node shared nothing multi-processor [AKO88]. We observed that in this�rst design the query evaluator formed the bottleneck. The overhead incurredby using a centralized scheduler to manage the load distribution was negligible inour distributed store environment, due to the subquery cost. These encouragingresults lead to further research which is presented in this thesis.

58 CHAPTER 5. DYNAMIC QUERY PROCESSING5.5 ConclusionIn this chapter we have outlined the basic objectives and techniques to achieveDynamic Query Processing. The basic idea is to postpone optimization decisionsand adjust query evaluation plans at run-time. We argued that the main charac-teristics for a DQP architecture are the query step method and the granularityof the resulting subqueries.We presented two orthogonal approaches to query decomposition for dynamicquery processing: the query step and data step approach. In the �rst approach aQEP for part of the query is produced and executed. On the basis of its result aQEP for the next part of the query is produced. The second approach partitionsthe involved relations so that the query is replaced by the union of independentsimilar subqueries.The granularity speci�es the amount of query processing performed before aquery evaluation plan is re-considered. It determines the level of control thescheduler has on the query evaluation.In this thesis we investigate a DQP architecture based on data step and asmall granularity because it facilitates exploitation of parallelism and run-timeoptimization. In the data step approach a small granularity leads to a largenumber of independent subqueries. The reduction of the number of subqueriesis therefore a major research issue addressed in this thesis .In the following chapters the Goblin OODBMS is presented. Attention is paidto its language aspects and storage model, but the main focus is its dynamicquery processing architecture.

Chapter 6The Goblin Query Processing Scheme
6.1 IntroductionThe Goblin query-processing architecture is based on the assumption that theGoblin applications handle large amounts of similar data. A query is translatedinto a set of relational operations that process data set-at-a-time. E�cient sup-port of navigational access, where an application retrieves and updates data byvisiting individual objects through their attributes may require a totally di�erentobject representation scheme and query processing architecture. In such systemsthe performance for data access is increased by clustering objects frequently usedtogether and by maintaining index structures for frequently evaluated path ex-pressions [BK89].In the traditional approaches a query schedule is generated at query com-pile time (static query processing). The query optimizer uses cost functions tochooses an optimal schedule from a large set of possible query schedules.The cost formulas are mostly based on the number of distinct values andcardinality of attributes. With these statistics and under the assumption that theattribute value approaches a uniform distribution, the ordinality and cardinalityafter applying a relational operation can be estimated. However, if the datadistribution is skewed, the error introduced can be signi�cant [Loh89].Furthermore, if the query consists of a large number of operations, the errorcomponent is increased at each operator leading to a totally unreliable estimate,and, therefore, a questionable optimal schedule. The decomposed storage modelof Goblin (See Chapter 4) has the e�ect that objects have to be reconstructedfrom binary relations. The result is that queries tend to contain a large numberof joins. For instance, if a query requests all n attributes of objects of a subset59

60 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEMEof a class, n semi-join operations should be performed to retrieve the associatedattribute values.Another problem which is expected to be more pronounced in an object ori-ented system is the unpredictability of the system load, which could lead to asituation where one processor sits idle, while another forms the bottleneck in thequery pipeline. The main reason is that basic types with their operations canbe added to the system. For simple types like integer numbers and strings, theCPU cost of an operation is easy to determine using pro�ling, and to predict.However, when for instance an image type is added to the system, there can bea large variation in the processing time required for its complex operations. Itcan also be that the operation is performed remote by a special server.To overcome the e�ect of data skew and the non-uniform load distributionGoblin uses a DQP scheme as presented in Chapter 5. We expect that theload balancing and dynamic query optimization scheme leads to a better systemutilization and query response time. We will �rst describe the Goblin DQParchitecture and then give an overview of query processing in Goblin.6.2 The Goblin architectureThe Goblin architecture is modeled after the general DQP architecture presentedin Chapter 5. The global architecture consists of three types of processes: asingle Query Scheduler, a pool of Query Processors, which correspond to theQuery Evaluator in the general DQP architecture, and an equal number of Bu�erManagers (See Figure 6.1), which provide global data access.The Query Scheduler receives query requests from an application program anddrives and controls the query execution by generating subqueries or tasks anddistributing these tasks dynamically over a pool of Query Processors. It uses aload balancing scheme to minimize the average task execution time. Further-more, it implements a task elimination algorithm to optimize the query executionprocess using feedback information on task results.The Query Processor executes the tasks in main-memory and it assists theQuery Scheduler by sending feedback information on the average task executiontime and occurrence of empty intermediate task results. The Query Processorobtains the fragments for the task from its local Bu�er Manager process. TheBu�er Managers together store the database and o�er the Query Processors aglobally accessible and persistent fragment store.In the next subsections these components are discussed in more detail.6.2.1 Bu�er ManagerOn each processor there is a Bu�er Manager, which maintains part of the database ensuring data persistency through data replication. If one of the processorscrashes, the system can continue by using one of the replicas stored on anothersite. When the processor starts up again after a system crash, it can recover itsdata using the replicas managed by the other bu�er managers or stored on disk.During query execution data is copied on request and transmitted between thebu�er managers on the network. Each bu�er manager uses a signi�cant amount

6.2. THE GOBLIN ARCHITECTURE 61

Fragment Transport

Summary

Database

Partitioning

Information

Query

Scheduler

Query

Processor
Query

Processor

Manager Manager Manager

Query

Processor

Task execuction feedback

Tasks

Buffer Buffer Buffer

Figure 6.1: The Dynamic Query Processing architectureof its processors main-memory to store the fragment copies and to maintainreplicas.The bu�er contents is determined by the tasks that are being executed andby the bu�er replacement policy. The fragments that are required by a taskare �xed and can not be removed from the bu�er. Several bu�er replacementsstrategies can be considered, ranging from random strategies to traditional LRUalgorithms. This choice is closely related to the task allocation algorithm used.In Chapter 9 this issue is examined more closely by comparing several combina-tions of task allocation and bu�er replacement algorithms.The bu�er managers migrate or replicate fragments to distribute the fragmentreferences evenly and to spread the storage for persistent fragments over theavailable processors. Fragment migration and replication is not controlled bythe Query Scheduler. The goal of fragment allocation and replication in theGoblin architecture is to improve the fragment availability and access time overmultiple queries, while the QS is only concerned with the e�cient execution ofa single query. The fragment allocation information is available to the QS toachieve this. The QS can then allocate subqueries over the available processors,so that it results in a minimal amount of data transport.The bu�er manager o�ers a standard set of transaction management primi-tives, such as shared/exclusive read/write locks on fragments and a two-phasecommit protocol.The data allocation and replication problem are not addressed in this thesis.Furthermore, the transaction management issues, logging and recovery are alsoconsidered to be outside the scope of this thesis. However, based on our expe-rience on transaction management and recovery issues in the PRISMA project[vdBK90], we think that they can be solved satisfactorily.

62 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME6.2.2 Query ProcessorThe Query Processors (QP) form the engine of the query evaluation process.For each task the QP �rst tries to obtain the referred fragments from its localbu�er manager. If the data is not available, the bu�er manager retrieves thedata from the remote sites.In contrast to the SQP execution model, the execution order of the individualoperations in the query is not �xed at compile time. Instead, all feasible eval-uation plans are considered by the QP. The task evaluator of the QP selects aplan depending on the availability of the fragments and a cost estimate for eachplan.For instance, if the QP is requested by the QS to calculate Q = R1 1 S2 1 T1,and fragments S2 and T1 are already present, it will �rst calculate S2 1 T1,and store the intermediate result for further use. When fragment R1 arrives, itcompletes the join operation, and informs the QS that it has evaluated the taskQ(R1; S2; T1). The task-evaluation algorithm is discussed in detail in Chapter10.A task monitor keeps a record of the average task execution time, and ofevents, which are interesting for dynamic query optimization, like the occurrenceof empty intermediate results. This information is feedback to the QS.6.2.3 Query SchedulerThe functionality of the Query Scheduler is implemented by three subprocesses:the Generator, the Allocator, and the Optimizer. These processes communicateand coordinate their actions through the data structure called the Task Table.The Generator, Allocator and Optimizer use this data structure to store new taskdescriptions, select tasks for execution, and change or remove task descriptions,respectively. Figure 6.2 presents the global structure of the QS. In the followingparagraphs, the functionality of the main processes is described.The Generator initiates and drives the query-execution process by producingnew tasks using the partitioning information stored in the summary database.This partitioning information combined with the query speci�cation determineswhich fragment combinations might contribute to the query result. In essence itsimulates the actual query on the summary database. The generated tasks arequeued for execution in the Task Table.The Optimizer performs logical optimizations of the query at run time. It usesits knowledge about the dependencies between the operators and operands in aquery and the statistical information from task executions to remove or eliminatetasks from the Task Table data structure. An example of a logical optimizationis task elimination. In this technique for each query a set of elimination rulesis de�ned. Consider a four-way join query Q = R 1 S 1 T 1 U , where therelations R; S; T and U are partitioned into fragments. For this example thefollowing rules can be derived:jRi 1 Sj j = 0 �! 8x;yjRi 1 Sj 1 Tx 1 Uyj = 0jSi 1 Tj j = 0 �! 8x;yjRx 1 Si 1 Tj 1 Uy)j = 0jTi 1 Uj j = 0 �! 8x;yjRx 1 Sy 1 Ti 1 Uj)j = 0

6.2. THE GOBLIN ARCHITECTURE 63
Allocator

Task

Optimizer

Generator

Task Execution Feedback

Process table

Summary Data

Task table

Figure 6.2: The main components of the Query SchedulerThus, if the result of a task execution is empty, because of an empty partialjoin (eg. R1 1 S7), then all the other tasks with this fragment combination (viz.Q(R1; S7; Tx; Uy) will not contribute to the �nal query result and, therefore, donot need to be executed. This technique is discussed in detail in Chapter 8.The Allocator is responsible for the load control and load balancing of thequery evaluation. It selects tasks from the Task Table and assigns these tasksto the available Query Processors. For task selection the Allocator can use thefragment allocation information. For the selection of the processor site, theload distribution of the QPs, maintained in the process table, is also taken intoaccount. This information is updated by task feedback information from theQuery Processors.These functionalities of the QS, task generation, task elimination (optimiza-tion) and task allocation are essential for the whole system performance. There-fore, they are addressed separately and in detail in Chapters 7, 8 and 9 for taskgeneration, task elimination and task allocation, respectively.Summarizing, the Goblin query processing architecture is designed to supportthe following features:� The query scheduler provides a solution to the unpredictability of the loaddistribution, and at the same time uses the summary data base to exploitskewed data distributions.� The task generation and task elimination processes reduce the large num-ber of tasks resulting from the DQP scheme based on the data decompo-sition approach and a small task granularity.� The task allocation process reduces the total number of fragment I/Orequests by taking into account the fragment distribution.

64 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME� The query processor operates data driven to e�ectively handle strong
uc-tuations in the fragment arrival rate and dynamically optimize the querytask on the basis of measurements and the available resources.Having presented the Goblin architecture, we will now look at the query eval-uation process in more detail, and speci�cally, discuss the �rst step in queryexecution namely, the translation of Goblin queries into an internal representa-tion.6.3 Query processing overviewIn Chapter 3 we introduced the derived-class concept as the basic mechanism toquery the Goblin data base. Each derived class de�nes a view on the data basethrough which the objects can be accessed and updated using the methods onthe composing objects. Thus, the objects in the derived class re
ect the currentstate of the data base. Once the application program applies a method to thederived class, the class de�nition is interpreted as a query on the classes fromwhich it is derived.The general Goblin query process is decomposed into three pipelined sub-queries: an optional split subquery, an obligatory process subquery, and an op-tional merge subquery. The pipelined subqueries act as a �lter and assembly linefor the objects that enter the pipeline at one end and leave the pipeline at theother. These query pipelines can be further combined into networks of pipelinedqueries.In the split subquery the binary relations involved in the query process are par-titioned to ensure independent subqueries on the partitions in the query phase,and to reduce the amount of work in the process subquery. The split subqueryis rarely necessary as the binary relations are generally already partitioned onboth attributes in the binary relation.In the next phase, the process subquery, the actual query is evaluated for all thee�ective fragment combinations. Whether a fragment combination is e�ective,or contributes to the query result can be checked by executing the query on thesummary data of the fragments.The �nal phase, or merge subquery is used for global operations. In a sortoperation, for example, the merge phase merges the sorted fragments. For ag-gregate operations, the merge phase combines the intermediate results producedin the query phase.The decomposition into query phases is performed at compile time, and cor-responds to the heuristics used in query optimization in (parallel) relationaldatabase machines. Performing selections before the remainder of the query, anddata partitioning to reduce the amount of work are examples of these heuristics.The main di�erence with query decomposition in relational database systems isthat the bulk of the work is performed in the query phase by executing a com-bination of relational operations for each fragment combination. Thus, withineach phase, only data parallelism is exploited. Furthermore, the task throughputof each phase can be dynamically adjusted, so that the input and output ratesof the pipelined phases are balanced.

6.3. QUERY PROCESSING OVERVIEW 65In this thesis we consider only the process subquery. We assume that the datais already partitioned, so that the split phase can be omitted. Furthermore, aswe do not consider the translation of aggregate queries, i.e. the merge phaseis also absent. In the following, the term query refers therefore to the processsubquery.The decomposed storage model is also used to represent the query result. The�nal assembly of objects from their composing binary relations is therefore leftto the application process. The rationale for this approach is that the applica-tion will only infrequently need access to the whole object. The overhead forreconstructing part of the object at the application's site is low compared totransporting a fully reconstructed object from the database to the applicationprocess. In general the result consists of objects of a single class.The result of the query evaluation is a set of binary relations that containenough information to construct objects with the type of the derived class thatsatisfy the selection condition. Only when an external method (i.e. a C orC++ function) is applied to the objects of the derived class, the objects arereconstructed to the level required by the method.The next sections describe the generic derived class, the translation process,the scheduling and task execution in greater detail.6.3.1 The derived classFrom the de�nition given in Section 3.3 we know that the general derived classde�nition consists of a type-speci�cation, binding-list, and a constraint. In thefollowing we describe the syntax of a derived class speci�cation, using a BNFnotation. Non-terminals are enclosed in brackets (hi). Terminals are speci�edin small caps for keywords (keyword) and in italic script for other terminals.hderived-classi : class class-nametype htype-speci�cationifrom hbinding-listiwhere hselection-conditioniThe type speci�cation determines the structure used to store the query result.It speci�es which attributes from the binding list appear in the query result. Inthe following we will deal only with a special case, namely when all the attributesfrom the binding list are kept.The binding list de�nes the name and object domain for each attribute. Theattribute ranges over the associated class extent, and its type is implied by theclass speci�cation. Without the type speci�cation, the binding list implicitlyde�nes the extent of the derived class to consist of tuple objects, where eachattribute ranges over its associated class extent.The attribute values range over the class extents associated with the classnames in the binding list. Without a selection condition the binding list classextent of the derived class consists of all the possible attribute value combina-tions.

66 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEMEThe class names which appear in the binding list, can also be derived classes.The �rst time a derived class is used it is materialized. In the following we onlyconsider the case that the class names in the binding list are materialized classes.hbinding-listi : class-name attribute-namej class-name attribute-name ',' hbinding-listiThe selection condition speci�es the state constraint that holds for all theobjects in the derived class extent. In materializing the class extent the selectioncondition is used to construct a query on the stored binary relations.The basic building blocks for a condition are path expressions, restrictionterms, join terms and boolean terms. Currently, we do not consider function andmethod calls. The complete condition is then an boolean expression over one ormore terms.hselection-conditioni : hboolean-termihboolean-termi : hjoin-termij hrestriction-termij hboolean-termi and hboolean-termij hboolean-termi or hboolean-termihjoin-termi : hpath-expressioni hcomp-opi hpath-expressionihrestriction-termi : hpath-expressioni hcomp-opi hconstantihpath-expressioni : attributej attribute � hpath-expressionihcomp-opi : '<' j '�' j '==' j '=' j '�' j '>'The path expression speci�es the objects that can be reached starting fromthe object referenced by an derived class or target attribute and traversing thestructure of the object. The path speci�es the traversal by concatenating theattribute names encountered. Note that as there exist single-valued and set-valued attributes, the result of the path expression represents a single object ora set of objects.The basic predicates consists of the equality operations = and ==, which testfor deep equality and object identity respectively, and the comparison operations<;�;�; >1. The default comparison operations are de�ned for the base objects.1Currently we do not consider the equality operation, because it requires an exact matchwhich implies that two objects have exactly the same properties. Furthermore, testing deepequality is an expensive operation, which requires determining the sets of base objects reachablefrom two objects, and testing whether the two are equal.

6.3. QUERY PROCESSING OVERVIEW 67Composite objects are compared on their object identi�ers, which have a systemde�ned ordering.The condition is built out of two kinds of basic terms: join terms and restric-tions terms. The join term is an expression which relates two class attributes.In general the expression consists of two path expressions and a basic predicate.A restriction term speci�es the minimal range of values for a path expression,using a basic predicate and a constant value.The steps in the query translation process will be illustrated using the follow-ing example query taken from the Goblin language report [KvdBS+93].Example 6.1 The class Mail collects all letters sent by children to their parentsliving in Paris. As the class is de�ned in terms of existing classes, this is anexample of a derived class.type Letter=tuple(Person sender, receiver; str text);type Mail= tuple(Letter l; Person p, c);class mailtype Mailfrom person p, person c, letter lwhere c in p.kids and l.sender == c and l.receiver == pand p.address.city == `Paris'6.3.2 Query translationAlthough Goblin provides a sophisticated set of language constructs for dataaccess, the translation of queries to query programs is rather straightforward.This stems from the object representation model, which enables us to representquery speci�cations on complex objects using simple binary predicates.Furthermore, the Goblin query processing architecture is based on the assump-tion that query optimization can be done e�ectively at run-time. The executionorder of relational operations is therefore delayed until run-time, and based onthe cardinality or availability of the operands.The translation and evaluation of the generic derived class is performed in thefollowing steps:� The class de�nition is transformed into a query graph, which representsthe constraints that exist between the attributes of the derived class asspeci�ed by the class constraint.� This query graph is used by the task generation program of the queryscheduler. The query graph is interpreted on the summary data. The QSgenerates for this query graph fragment combinations which (can) con-tribute to the query result.� The tasks generated by the scheduler are speci�ed by the query graph anda set of fragment identi�ers. The fragment identi�ers are associated with

68 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEMEedges in the graph. The query processor interprets the query graph usingthis fragment assignment.� Finally, for each method call in the application program, code is generatedto access the attributes referred to by the method. The query result isdelivered by Goblin to the application program as a set of binary relations.For externally de�ned functions the query result is transformed to theapplication language speci�c data structures. This aspect is not furtheraddressed in this thesis.The next section de�nes the components of a query graph. Furthermore,it discusses the transformation of the generic derived class into a query graphrepresentation. This is speci�ed by the operator T which transforms the ba-sic syntactical components: path expressions, restriction terms, join terms andselection conditions, and boolean terms into graph components.6.3.3 The query graphThe query graph representation is not a new concept or restricted to the speci�-cation of relational queries. Our query graph resembles the one used by Gardarinin [GGdM89] to direct the translation of logic programs to relational expressions.Both approaches consider only binary predicates (relations).Gardarin associates with each rule in the logic program a query graph. Eachvariable is represented by a node and each predicate by an edge in the graph.In his article he discusses the transformation process of this query graph to aset of �xpoint equations and, �nally, to a relational algebra program. His mainconcern, however, is to translate recursive logic programs.Goblin queries are not recursive, but are simply select-project-join (SPJ)queries. The �rst step in the translation is to put the selection condition ina conjunctive normal form. Each conjunct de�nes a part of the query result, sothat the total query result is formed by the union of the query result of eachconjunct. In the following we consider the translation of a conjunct.Example 6.2 The Mail example is already in a conjunctive normal form. Theselection condition is therefore given by the following rule:Mail(p; c; l) : � kids(p; c) ^ sender(l; c) ^ receiver(l; p)^address(p; a)^ city(a; x) ^ equal(x;0 Paris0)The predicates kids, sender, address, city and receiver are de�ned by theircorresponding binary relations. The variables p,l and c are the projection at-tributes speci�ed by the type de�nition. The x variable is a free variable whichranges over the string attribute domain of the city relation. Note that the ruleis never recursive. In other words the goal predicate (Mail) does not occur inthe rule body.In the next step this rule is translated to a query graph. A query graph isidenti�ed by a four tuple G = hN;E;Ai. The set of nodes N = f1; : : : ; ng

6.3. QUERY PROCESSING OVERVIEW 69
y

address

"Paris"

city

x = ’Paris’

x receiverP Lkids senderCFigure 6.3: The query graph for the Mail querycorresponds to sets of data base objects. Some of these nodes are projectionattributes others are anonymous attributes like the x attribute in the previousexample. The set of projection attributes is given by A � N .The constraints between objects is represented in the graph by the set of edgesE � N � N . An edge corresponds to an existing binary relation used by thestorage model, or to a condition. This can be a selection predicate between aset of objects and an atomic object or a join predicate between two objects.The number of edges connecting a node is called the degree and denoted byd(x). It is de�ned by: d(x) = jf(e1; e2) 2 Ejje1 = x _ e2 = xgj.6.3.4 Query graph constructionThe translation of a generic derived class speci�cation to a query graph isstraightforward. For each of the basic language constructs we de�ne the trans-lation to a query graph. The operation which maps the language constructs toa graph is denoted by T .Example 6.3 The query graph for the Mail example query is presented in Fig-ure 6.3. It illustrates the translation of path-, restrict-, and join expressions.Furthermore, note that the resulting query graph is cyclic.6.3.4.1 Path expressionsA path expression denotes a traversal through the object graph. Applying thepath expression to a speci�c object or set of objects, it de�nes the objects thatcan be reached.The attributes in the path expression correspond to binary relations and aremapped onto edges. The intermediate nodes visited when traversing the objectgraph along the speci�ed path are anonymous and correspond to the intermedi-ate objects visited. Let x1; : : : ; xn denote these intermediate anonymous nodes.Then the translation of a path expression is given by:T (p1 � p2 � � � pn) �! p1 p2 pn xnxn�1x1x0Path expressions do not occur in isolation, but form part of restriction- andjoin-terms. In these situations the path expression is bound at one side to a

70 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEMEclass attribute, and speci�es traversals through the object graph starting fromobjects in the attribute domain.6.3.4.2 Restriction termsA restriction term selects objects from the attribute domain that satisfy a selec-tion condition. The attribute range is commonly determined by a path expres-sion and consists therefore of those objects that can be reached by traversingthe path through the object graph.A restriction term can be considered to be a special kind of binary operation,where one of the operands is a single object. To facilitate the translation processselection expressions are treated similarly to join expressions. If the selectionpredicate implies a range restriction, a condition edge is created labeled by theselection condition and connected to a node representing the constant.xn�cT (a � p1 � p2 � � � pn�c) �! p1 x1a pn cxnThe attribute a is added to the set of projection attributes. This informationis used in the task generation and task execution phase to determine the queryresult.6.3.4.3 Join termsA join term selects those object combinations from two target attribute domainsthat satisfy the join condition. The join condition is generally expressed betweenobjects that are associated to the attribute domain through path expressions.The join condition can be considered to be a virtual binary relation, whichis not stored, but can be derived by evaluating the join condition on two setsof objects. In the object graph perspective, a join term selects those pairs ofobjects that are connected by two paths reaching from both objects and linkedby an edge representing the join condition. The construction of the query graphis straightforward. Starting from each attribute, a sequence of edges is created.These edges are linked by unique intermediate nodes denoted by x1; : : : ; xn andy1; : : : ; ym, to represent the intermediate objects in the object graph. The edgescan be labeled either by the attribute names specifying the path, or by twonode pairs (xi; xi+1). In any case, each real edge is associated with a binaryrelation. The join term is labeled by the condition � that holds between theobjects associated with nodes xn and ym. xn�ymT (a1 � p1 � � �pn�a2 � q1 � � � qm) �! a2yma1 p1 x1 xn�1 pn xn q1qm y1ym�1If the join condition expresses equality of the object sets reachable from theattributes, the condition edge can be omitted as edges that meet in the querygraph already imply equality of the domains associated with these edges.

6.4. CONCLUSION 71T (a1 � p1 � � �pn == a2 � q1 � � �qm) �! a2q1qm y1ym�1a1 p1 x1 xn�1 pnBoth attributes a1 and a2 are added to the set of projection attributes.6.3.4.4 Boolean termsBoolean terms are built from restriction- and join-terms using the boolean oper-ations. Because the boolean terms are speci�ed in conjunctive normal form, thetranslation consists simply of transforming the join-terms and restriction termsin subgraphs and combining them into a single query graph, consisting of oneor more connected components.If the query graph consists of two or more components, they are not connectedby an edge, and therefore are the possible combinations not restricted by aconstraint. The query result is then simply the Cartesian product of the resultof each connected component. For the remainder we assume that the querygraph consists of a single component, which is not a severe restriction. Becausein general queries are used to produce meaningful information by combiningdata.6.4 ConclusionIn this Chapter we have presented the Goblin dynamic query processing ar-chitecture. This architecture is modeled after the general DQP architecturepresented in Chapter 5. It consists of a query scheduler, query processor andbu�er manager.This architecture is characterized by the novel two-level query processingscheme. The query is evaluated in two phases. One level consists of the queryscheduler and the other of the query processor pool. The query scheduler �rstevaluates the query on a summary data base containing fragmentation infor-mation. Then the tasks produced by the QS are executed on the second levelby the query processors. This scheme facilitates the implementation of a DQParchitecture and enables the separation of optimization issues. This leads to a
exible and adaptive processing structure.The query scheduler in
uences the number of I/O requests by its task al-location algorithm. It tries to reduce the total number of tasks with its taskgeneration algorithm and task elimination algorithm. The query processor isonly concerned with CPU optimization and memory utilization. These issuesare discussed in detail in the subsequent chapters.Furthermore, we introduced the query graph which is the internal query repre-sentation. The query graph forms the basis for summary query evaluation in thetask generation algorithm and task execution in the query processor. Finally,we showed the translation of a query speci�cation to a query graph.

Chapter 7Task generation
7.1 IntroductionThe Query Scheduler drives the query execution by generating tasks, assignsthese tasks to the available query processors, and coordinates the transport ofresults to the application.Task generation is based on running the query against the summary databaseas de�ned in Chapter 4. The summary database maintains for each fragment of abinary relation its identi�cation and abstract information on the attribute valuescontained. In case of range-partitioned relations this consists of the minimumand maximum values for each attribute. For hash-partitioned relations it issimply the hash value.The task generation algorithm queries the summary information for all therelations involved and selects those fragment combinations that can contributeto the query result. For this purpose the relational operations join, semi-join,and select have been de�ned for summary relations (See Section 4.4.3).The summary data base should re
ect the actual data base partitioning. Anychange in an underlying binary relation must be propagated to the correspondingsummary relation before being used. In this thesis we assume that the workloadconsist of read-only queries. Therefore, the overhead for maintaining the consis-tency of the summary data is not considered. Under a read-only workload thesummary data base can be replicated to all available processors and maintainedat low cost at run-time to re
ect changes in the data base partitioning. Themain cost factor taken into account for task generation is the CPU cost.In a parallel system task generation and task execution are run in parallel. In asingle processor environment the summary query is run as a batch job before the72

7.2. NOTATION AND TERMINOLOGY 73tasks are executed. These approaches are referred to by the terms navigationaland batch query, respectively.The summary query is evaluated using the query graph de�ned in Chapter 3.The edges in the query graph are associated with their corresponding summaryrelations. First the selections speci�ed in the query graph are applied. Thisis a good heuristic to reduce the cardinality of the operands involved in theremaining operations. Secondly, an execution order for computing the summaryquery is determined. The key to the solution of the summary query is based on agraph algorithm for the Chinese Postman Problem. The derived execution orderis �nally used in the third phase by the batch- or navigational- task generationalgorithms. The next sections discuss these phases in more detail.7.2 Notation and terminologyIn this chapter we consider summary queries de�ned by a query graph G =hN;E;A; cardi consisting of a single connected component (See Chapter 6). Thequery graph de�nes a constraint on the data base consisting of summary rela-tions. The edges in the graph correspond either to summary relations or toselection or join conditions. Given an edge e = (x; y), the associated relationis denoted as R(x; y) and the associated condition is denoted as C(x; y). Thenodes in the graph correspond to sets of partition ranges or in the case of hashpartitioning, to hash values. The set A identi�es the nodes associated with theprojection attributes.The summary relations have been introduced in Chapter 4. They maintainfor each fragment of a binary relation its unique identi�cation bid and for eachattribute, the attribute value range or the hash value. To simplify the nota-tion, the summary information on both attribute values is named s1 and s2 forboth range- and hash-partitioned relations. A summary relation R denoted by:R[bid; s1; s2].Example 7.1 To illustrate these concepts we use the Mail query de�ned in Ex-ample 6.1. In Figure 7.1 we show the corresponding query graph and illustrateits relation to the summary database. We assume that all the relations are hash-partitioned on both attributes. The summary relations maintain therefore foreach fragment the hash values for both attributes. The domain of node x is de-�ned by the hash-values stored in the city summary relation. For node L it isdetermined by the intersection of the summary relations receiver and sender.The join, theta-join, and select operation have been rede�ned to process sum-mary relations. The main distinction with the common operations is that theyare based on a comparison operation on the partition information. For instance,when joining two summary relations of range partitioned relations, two fragmentsare considered equal if their attribute ranges overlap. To distinguish these op-erations from the ordinary relational operations, they are denoted as �;1; ><and 1� for the selection, join, semi-join, and theta-join operation, respectively.The objective of summary query processing is to identify fragment combina-tions that (potentially) contribute to the query result. Therefore the summaryquery result is formed by combinations of fragment identi�ers associated with

74 CHAPTER 7. TASK GENERATION
s2

receiver

s3

k1

k2

k3

0

1

2

r1

r2

r3

a1

a2

a3

1

0

0

0

1

2

2

0

1

0

1

2

sender

kids
P C

0

1

0

0

1

0

c1

c2

c3

0

0

1

0

1

2

0

1

2

s1

s1 s2bid s1 s2bid s1 s2bid s1 s2bid

L

s1 s2bid

address

"Paris"

city

x = ’Paris’

x y

Figure 7.1: The query graph and its associated summary relationsrelation edges. For summary query processing the query graph is therefore trans-formed into a more appropriate representation, the join-index graph. This willbe explained further on. First the graph initialization is discussed.7.3 Query graph initializationDuring the initialization phase the edges in the query graph are bound to a setof summary relations. It involves a binding phase and selection phase.In the binding phase the target attributes nodes, that are not yet connected torelation edges are bound. This means that each of these target attribute nodesis connected through a relation edge to a node representing its domain. Thisrelation edge is associated to the summary relation representing the attribute'sdomain.In the selection phase condition edges are successively removed from the graph.Performing selections �rst is generally a good heuristic, because these operationsreduce the operands of remaining operations and are relatively cheap. Finally,the edges in the query graph are labeled by the cardinality of their associatedsummary relations.Let the edge (c; x) 2 E correspond to a condition edge, where c is the nodecorresponding to the constant, and x the adjacent node and let (y1; x); : : : ; (yk; x)denote the relation edges incident on x. Furthermore, the condition associatedwith the edge is referred to by C(c; x). Then the following program evaluatesthe selection condition:for i from 1 to k doR(yi; x) := �C(c;x)R(yi; x)done

7.4. THE CHINESE POSTMAN PROBLEM 75
a1

500

a2

a3

1

0

0

0

1

2

2

0

1

500

301001

0c10

receiver sender

kids
P

0

1

0

0

0

1

0

1

2

0

1

2

s1

s2

s3

k1

k2

k3

0

1

2

r1

r2

r3

C

s1 s2bid s1 s2bid s1 s2bids1 s2bid

addresscity
x y

L

s1 s2bid

Figure 7.2: The initialized Mail query graphThe removal of a condition edge implies the evaluation of the selection con-dition against all the binary relations R(yi; x). The cardinality statistics of theupdated relation edges is then adjusted.Example 7.2 The binary relations in the Mail example are hash-partitioned. Inthe selection phase the condition edge connected to node x is removed, leading tothe evaluation of the condition x = 'Paris' against the summary relation city.Consequently, the summary relation is reduced to a single entry (See Figure 7.2).Fortunately, all the projection attribute domains in the example are de�ned bythe summary relations associated with the relation edges receiver, sender, andkids. Therefore, the query does not have to be evaluated on the complete objectdomain de�ned by the summary relations Letter and Person.After the initialization phase the summary relations have the following cardi-nality. relation name cardinality[Person,Person] kids 30[Letter,Person] receiver 500[Letter,Person] sender 500[Address] Address 80[Address,String] city 17.4 The Chinese Postman ProblemThe solution to the summary query must satisfy the constraints speci�ed by thegrounded and modi�ed query graph. Each solution is identi�ed by a combination

76 CHAPTER 7. TASK GENERATIONof object identi�ers. If we denote these identi�ers by oi and (o1; : : : ; on) identi�esa solution, then their associated objects satisfy the relations in the query graph.In other words there is a path connecting these objects, which passes througheach edge of the graph at least once.Obviously, given a graph there are many paths that traverse all the edges.However, as traversing the path implies �nding the associated set of objects ateach node, there is a cost involved in the traversal. In general the traversal ofedges require joining the current set of objects with the binary relation associatedwith the edge. In the worst case the join result is the Cartesian product of thesetwo. We assume that the cost is dominated by the cardinality of the binaryrelation associated with each edge. This assumption is true if the resultingobject set is smaller or has approximately the same cardinality as the originalafter traversing the edge. Otherwise, the cost is dominated by producing theresult.If the join condition is an equi-join and represents a 1 � 1, or 1 � n-ary re-lationship, the result cardinality will be at most the maximum of the involvedrelations. Furthermore, as the summary data base is relatively small the querycost is considered acceptable.The query problem reduces under this assumption to �nding a route fromone node to another through a connected graph that uses each edge at leastonce. This problem is also known as the (undirected) Chinese Postman Problem(CPP) in Graph theory. The solution to this problem is given in [GM84][pp.340-344]. For brevity we will only give an outline of the algorithm and refer to thetextbook for a complete discussion and correctness proof.Algorithm 7.1 The basic idea of the algorithm is to �nd an Eulerian cycle in thegraph. If the graph is not Eulerian, then edges are added between nodes of odddegree to make the graph Eulerian. The algorithm is performed in the followingsteps:1. If the graph is Eulerian, the CPP cycle is simply the Euler cycle throughthe graph. By de�nition the Euler cycle traverses each edge only once.2. If the graph is not Eulerian, the graph is made Eulerian by adding chainsbetween pairs of nodes of odd degree. Let X � N denote the set of nodesof odd degree.3. Use the shortest path algorithm to �nd the shortest path between each pairof nodes in X (and its length).4. Construct the complete graph K(X), where each edge is labeled with thelength of the shortest path connecting the nodes.5. Determine the perfect matching with minimum weight on K(X). The re-sulting set of edges correspond to chains in the original graph. Further-more, the chains are the shortest chains that can be added to make thegraph Eulerian.6. Determine the Euler cycle through the modi�ed graph.

7.4. THE CHINESE POSTMAN PROBLEM 77With this algorithm a path through the query graph can be found that useseach edge at least once. We refer to it as the CPP path.Example 7.3 In the initialized Mail query graph the selection on city is performedand the graph is adjusted accordingly.1. First we note that the graph is not Eulerian. Thus in the CPP path someedges will have to be traversed more than once.2. The set X of nodes of odd degree is given by x and P . To make the graphEulerian, a chain consisting of existing edges connecting these nodes mustbe added to the graph.3. Calculating the shortest path between each pair of nodes in X is trivial.This path is given by the edges city and address.4. The complete graph K(X) consists of a single edge connecting the nodes Pand x with length 100 + 1.5. The perfect matching with minimum weight on K(X) is trivially the edge(x; P). The query graph is made Eulerian by duplicating the edges cityand address corresponding to the shortest path (x; P).This algorithm results in the following CPP path:
30

500500

1 100

addresscity

start node CP Lreceiverkidssenderx y
The CPP path �xates the evaluation order for the operations required to cal-culate the summary query, but the choice of the starting edge is free. Obviouslythe edge corresponding to the smallest relation is chosen as the starting edge.Note that once in the evaluation all the edges have been traversed, the re-mainder of the CPP path can be skipped. For instance, in the previous exampleonce the evaluation has reached node P for the second time all the edges havebeen traversed once. Consequently, traversing the relation edges address andcity a second time does not a�ect the query result found thus far.In the following sections two evaluation algorithms are presented, which usethe CPP path to calculate the fragment combinations that potentially contributeto the query result.Both algorithms do not use the query graph immediately, but rather theytransform it �rst into a join-index graph, which is a more convenient represen-tation of the problem. In this transformation relation edges are mapped ontoindividual nodes. Furthermore, each pair of adjacent edges on the CPP graph

78 CHAPTER 7. TASK GENERATION
0 0

1

0

a1

a2

a3

0

1

2

0

0

1

0

1

2

r1

r2

r31

address kids sender receiver

city-address

address-kids kids-sender sender-receiver

reciever-address

(c-a)

(a-k) (k-s) (s-r)

(r-a)

0

2

2

1

0

k3

k1

k2

00

1

2

s1

s2

s3

1

0

0

c1

s1 s2bid

y

city

s1 s2bidbid s2s1 bid s2s1s1 s2bid

Figure 7.3: The join-index graph for the Mail queryis represented by an edge in the join-index graph. The nodes are labeled by thename of the original edge and the new edges are labeled by the concatenationof the original edge labels. Condition edges in the query graph are mapped toedges in the join-index graph. Because selection conditions have already beenremoved from the query graph the condition edges are always adjacent to tworelation edges.The summary query result consists of fragment combinations that (poten-tially) contribute to the query result. These combinations are represented by aset of binary relations, called pivot relations, which consist of a pivot attributeand a fragment identi�er.Example 7.4 The join-index graph for our example is illustrated in Figure 7.3.The join indices are initially unde�ned and are generated during summary queryevaluation by joining the summary relations of two adjacent nodes. This will beillustrated in the next section.7.5 Batch task generationThe batch algorithm is divided into two phases: the initialization phase and thepivot phase.In the initialization phase the edges and nodes in the join-index graph areassociated with binary relations by traversing the CPP path. The nodes in thejoin-index graph are associated with the pivot relations identifying the subset ofthe summary relation satisfying the query constraints. Furthermore, join indicesare constructed and associated with the edges in the join-index graph. An entryin these join index relations represents a fragment combination with "equal"partitioning information.The CPP path is traversed starting with the node associated with the smallestsummary relation, the start node. While traversing the path a pivot relation is

7.5. BATCH TASK GENERATION 79constructed for each node indicating which fragments from the start edge andthe current relation lie on the part of the CPP path traversed thus far.Each pivot relation is basically a projection of the n-ary relation representingthe query solution on a unique tag -the pivot- and the fragment identi�er. Ini-tially, the solution to the query is represented by the pivot relation associatedwith the start node. This pivot relation is constructed using the mark opera-tion �, which extends a relation with a unique tag �eld called tag. Thus if xrepresents the start node the initial pivot relation P0(x) is constructed as follows:P0(x) = �[tag;bid]�R(x)Example 7.5 After this �rst step the join-index graph of the Mail query is ex-tended with a pivot relation P (city). This pivot relation consists of a single entry(1,c1) identifying a fragment of the city relation.The remaining pivot relations are constructed in two steps. First a join indexis constructed for the current relation edge and the next relation edge. Secondly,this join index is joined with the current pivot relation. Let x and y representthe current relation node and the relation node to be visited next, respectively.Then given the pivot relation P (x) for relation node x, the join index R(x:y)and pivot relation P (y) are constructed as follows:R(x:y) = �[x:bid;y:bid](R(x)1x:s2=y:s1R(y))P (y) = P (x) 1 R(x:y)Example 7.6 The �rst edge that is traversed in the join-index graph is the c-aedge. The join-index is constructed by joining the summary relations cityand address on their attributes city.s2 and address.s1. The resulting join-index consists of two tuples: R(c-a) = f(c1; a1); (c1; a3)g, and the pivot relationP (address) = f(1; a1); (1; a3)g.If the edge connecting the two nodes x and y corresponds to a condition edgeC(x; y), the join-index is calculated using the join condition. Note that the joincondition is de�ned on the attribute ranges of the summary relations R(x) andR(y). The pivot relation is calculated similar to the previous case.R(x:y) = �[x:bid;y:bid](R(x)1C(x:s2;y:s1)R(y))P (y) = P (x) 1 R(x:y)If the traversed edge corresponds to a 1 � n relation, many fragments willbe associated with the same start fragment. Conversely, if an n � 1 relationedge is traversed, the pivot relation will associate many start objects with thesame object. To maintain the property that each pivot relation represents aprojection of the query result, the duplicate pivot attributes in the constructedpivot relation must be renumbered. This transformation can be represented by

80 CHAPTER 7. TASK GENERATIONa transformation relation T , which associates a unique new pivot attribute tag0with each duplicate attribute in the constructed pivot relation. This transfor-mation relation is then used to renumber all the pivot relations constructed thusfar. Thus after construction of the new pivot relation P (y) the following actionsare performed:X := �P (y)P (y) := �[tag0;bid]XT := �[tag0;tag]X8x2N (P (x) := �[bid0;x](T 1 P (x))Example 7.7 Consider relations P (x) = f(tag1; x1); (tag2; x2)g and R(x:y) =f(x1; y1); (x1; y2); (x2; y1)g. Then the new pivot relations P (x) and P (y) arecalculated as follows:P (y) := P (x) 1 R(x:y)Resulting in P (y) = f(tag1; y1); (tag1; y2); (tag2; y1)g. This pivot relation doesnot have a unique pivot attribute and must therefore be renumbered:X = �P (y)P (y) = �[tag0;bid]XT = �[tag0;tag]XAfter this renumbering operation the pivot relation looks like:P (y) = f (tag01; y1), (tag02; y2), (tag03; y1)g and the transformation relation: T =f(tag01; tag1), (tag02; tag1), (tag03; tag2)g. This relation T is then used to renumberthe already de�ned pivot relations:P (x) := �[tag0;bid](T 1 P (x))Such that P (x) = f(tag01; x1); (tag02; x1); (tag03; x2)g. Note that the resulting pivotrelations can indeed be considered to be a vertically fragmented solution to thequery represented by R(x) 1 R(y).Example 7.8 After two steps along the CPP path in the Mail query the pivotrelations for city, address, and kids are constructed. The renumbering oper-ation ensures that the common pivot attribute is unique. This is illustrated inFigure 7.4. Note that the summary relations for city and address are dropped,because the required information is stored in the pivot relations and join-indices.In the pivot phase the pivot relations are used to construct all the fragmentcombinations by joining the pivot relations on the pivot attribute.Given the pivot sets P (x1); : : : ; P (xn), the complete set of tasks T [bid1; : : : ; bidn]is found by joining the pivot sets on the unique tag and projecting on the BATidenti�ers of the pivot relations.

7.5. BATCH TASK GENERATION 81
a3

address kids sender receiver

city-address

address-kids kids-sender sender-receiver

reciever-address

(c-a)

(a-k) (k-s) (s-r)

(r-a)

0

1

2

k1

k2

0

1

2

s1

s2

s3

1

0

0

k3

2

0

1

0

0

1

0

1

2

r1

r2

r3

p c p a p

1

k

2

1

2

1

2

a1

a3

c1

c1

k1

k3

city addr

c1

c1

a1

a3

addr.kids

k1

k3

a1

y

city

s1 s2bid s1 s2bid

bid s2s1

Figure 7.4: The join-index graph after two edge traversals.T := �[bid1;:::;bidn]P (x1) 1 � � � 1 P (xn) (7.1)Example 7.9 Finally, when all the edges are traversed, all the nodes are associ-ated with a pivot relation. In the Mail example this results in the pivot relationsfor city, address, kids, sender, and receiver. This is illustrated in Fig-ure 7.5. Notice that the uniqueness of the pivot attribute has the e�ect that thecalculation of the join expression 7.1 is reduced to a simple lookup operation.Summarizing we arrive at the following algorithm:
c p a p

c1 a1 k1 s3 r1p1 p1 p1 p1 p1

p

receiversenderkidsaddress

rpk p s

city

Figure 7.5: The summary query result for the Mail example.

82 CHAPTER 7. TASK GENERATIONAlgorithm 7.2 Given the join-index graph J = hN;Ei associated with the querygraph. Let the CPP path through this graph be de�ned by the node sequence(x1; : : : ; xn). Furthermore, let jR(x1)j � jR(xi)j for i 6= 1. Then the followingalgorithm calculates the pivot sets for each node.1. The node x1 represents by de�nition the smallest relation edge. The spe-cial operation � creates the initial pivot relation from the set of fragmentidenti�ers of the summary relation. This operation associates a unique tagvalue with each fragment identi�er.P (x1) := �[tag;bid]�R(x1)2. Traverse edges of the CPP path once from the starting node until the endnode is reached. For each visited node the pivot set is calculated. In the �rsttraversal a join index is associated with each edge. Let (xi; xi+1) denotethe edge to be traversed, then the following must be taken into account toconstruct the join index R(xi; xi+1) and pivot set P (xi+1) :� The edge (xi; xi+1) can be associated with a condition edge.� The pivot set P (xi+1) is already de�ned, because the node has alreadybeen visited. In this case the new pivot set is is the intersection of theprevious and new one.Thus the following actions are performed in the construction of the pivotsets: R(xi; xi+1) := � �[xi:bid;xi+1:bid](R(xi)1xi:s2=xi+1:s1Rxi+1)�[xi:bid;xi+1:bid](R(xi)1C(xi:s2=xi+1:s1Rxi+1)P (xi+1) := P (xi+1) \ P (xi) 1 R(xi; xi+1)Example 7.10 After the initialization the tasks are produced using the join ex-pression 7.1 and added to a task table for execution.7.6 Navigational task generationThe algorithm used in batch task generation produces the tasks in the �nalphase of the algorithm. For a parallel query processing architecture it is betterto perform the task generation and task execution in parallel. For this reason thenavigational task generation is designed. Basically, it recursively traverses theCPP path and uses the summary relations to create and test possible fragmentcombinations.Similar to the object graph associated with the data base, a summary graphcan be associated with the summary database. The nodes in this graph cor-respond to the relation fragments and the edges correspond to the associatedfragments, i.e. those fragments that have overlapping attribute domains.

7.6. NAVIGATIONAL TASK GENERATION 83

(s-r)(k-s)(a-k)

(c-a)

(r-a)

kids-sender

reciever-address

sender-receiver

address kids sender receiver

city-address

address-kids

city

y

r2

r1

k3

k1 s3 r1

s2

s1

a1

a3

r2

a2

1

1

1 1

2

2

3

3

3

3

4Figure 7.6: The summary graph for the Mail query

84 CHAPTER 7. TASK GENERATIONThe navigational algorithm constructs the query result incrementally by travers-ing all possible CPP paths through the summary graph. Each fragment in thesummary graph, can be associated through a single edge with zero, one, or morefragments. Furthermore, similar to the batch algorithm a distinction must bemade between relation and condition edges.For each path through the summary graph the reachable fragments at eachnode are maintained. Each time the path revisits a node, the same fragmentshould be encountered. Let bi denote the fragment associated with the nodexi, the set of fragments Bi+1 reachable in the summary graph is determined asfollows:Bi+1 = � �[bid]�s1=biR(xi+1)�[bid]�C(s1;bi)R(xi+1)Example 7.11 The complete summary graph for the Mail example is illustratedin Figure 7.6. The graph is constructed incrementally by traversing the CPPpath for each possible fragment combination. The �rst path starts with fragmentc1. From this node, the address relation fragments a1 and a3 can be reached.The algorithm will now recursively test each combination. As long as a fragmentcombination is successful, the path is drawn as a solid line. Note that mostcombinations fail when the receiver-address edge is traversed. Only a singlefragment combination remains.7.7 ConclusionIn this chapter we discussed a new and generally applicable query optimizationtechnique. The task generation algorithm produces a series of fragment com-binations or tasks that are su�cient to calculate a query result. It is basedon simulating the query on a summary data base containing the fragmentationinformation.Processing a query in two phases, a query on the summary data base and aquery on the data fragments is useful both for query processing in disk-basedsingle processor environments and in a parallel processing environments. Inthe �rst case, the summary query is used both as an indexing technique andthe tasks produced can be scheduled such that the available bu�er space isused optimally. An indication of its advantage can be found in the MCH taskallocation algorithm of Chapter 9.In a parallel environment the pro�t stems from the reduction of the numberof tasks to be executed and from the fact that task generation can be executedin parallel with task execution using the navigational task generation algorithm.The batch task generation algorithm is more suited for single processor envi-ronments as it uses cheap set-oriented operations to determine the tasks.The DSM storage model made it possible to translate the query processingproblem to the graph-theoretical Chinese Postman Problem. The e�ciency ofthis approach relies on the assumption that the relations are properly parti-tioned, such that the cost for evaluating the primitive (join) operations is notlarger than one of its operands and therefore linear in the size of its operands.

7.7. CONCLUSION 85The validity of this assumption depends on the partitioning of the relations.At best it results in a 1�1 relationship between summary relations. For instance,binary relations representing tuple attributes should be partitioned on their tupleoid. A proper partitioning is of utmost importance to keep the number of tasksand, therefore, the summary query cost low.

Chapter 8Task elimination
8.1 IntroductionThe predominant approach towards query evaluation in DBMS is to map a staticquery evaluation plan onto a processor pool for (data driven) execution. Oneof the major obstacles for improved performance is the lack of techniques topredict and to avoid resource congestion, which leads to underutilized hard-ware platforms. A possible solution is to use the standard query optimizationtechniques to generate a revised query execution plan from scratch at queryevaluation time. To control the optimization overhead, the threshold techniquecan be used to trigger the optimization [BR88, Ngu81]. Alternatively, a range ofdi�erent query schedules could already be prepared before the query evaluation.The measured query statistics then determine the �nal query schedule [GW89].For this purpose choose-plan operators are included in the query execution plan.A novel approach is to use a dynamic query processing scheme, which partitionsthe data base such that the query result is the union over all sub-queries. Thesub-queries are distributed for execution by a Query Scheduler as independenttasks on a pool of processors. This approach can be seen as a generalizationof associative join processing [OV92][pp. 470-477], where through horizontalpartitioning of the operand relations a join expression is transformed to theunion of join expressions on their composing fragments:R 1 S �![i;j Ri 1 SjThis scheme has the advantage that information obtained after the executionof each task can be returned to the Query Scheduler for load balancing and query86

8.1. INTRODUCTION 87
Query Evaluator

|join(City2,Factory3)| = 0

Q(Person12,City10,Factory8)

Scheduler

|join(City,Factory)| = 0 ->

DQO rules

....

....

...

...
City2 Factory3

|Q(-,City,Factory)|=0

Q(Person1,City1,Factory1)

Q(Person2,City1,Factory1)

Q(Person5,City2,Factory3)

Q(Person10,City2,Factory3)

Q(Person1,City2,Factory3)

rm Q(-,City2,Factory3)

(1)

(2) (3)

Person1

join

join

Figure 8.1: Dynamic Query Optimizationoptimization. Load balancing is achieved by controlling the allocation of tasks.The query optimization scheme is generally known as Dynamic Query Optimiza-tion (DQO) and is de�ned as the process of modifying the query schedule basedon the measurements taken by the Query Evaluator.In this chapter, however, we present a run-time optimization called task elim-ination. This optimization is based on the assumption that the tuples, whichpartake in the query result are, generally not uniformly distributed over theproduct space of the relations involved. Instead, they often exhibit some clus-tering and data skew. As a result the query schedule need not be evaluated forall the fragment combinations. For example consider the following query:SELECT *FROM Person P, City C, Factory FWHERE P.address= C.name and C.name = F.locationSince the number of factories in a city is variable, there are many (City,Factory) pairs that do not contribute to the query result. Consequently, a largenumber of (Person, City, Factory) combinations do not have to be consideredeither. Let Q(x; y; z) denote the sub-query that calculates the example queryfor the fragments x, y, and z. Then this knowledge can be represented by thefollowing optimization rule:jjoin(City; Factory)j = 0 �! jQ(�; City; Factory)j = 0 (8.1)This rule expresses the fact that if the result of the join between a Cityfragment and a Factory fragment is empty, then the query, that uses this com-bination of fragments is empty regardless the contents of the Person fragment.The Query Evaluator reports the occurrence of empty intermediate result to thescheduler. The Query Scheduler can then perform logical optimizations usingthis rule, i.e. not taking tasks that contain this combination of fragments intoexecution (See �gure 8.1).Unlike in static query processing, the execution order of the joins are not�xed in our DQO scheme. This means that the choice between the execution

88 CHAPTER 8. TASK ELIMINATIONorders (Person 1 City) 1 Factory and Person 1 (City 1 Factory) is made atrun-time. Thus, apart from the previous rule the following rule is also provided:jjoin(Person; City)j = 0 �! jQ(Person; City;�)j = 0 (8.2)Whether Rule 8.1 or Rule 8.2 is actually used depends on the execution orderchosen at run-time. If both joins are evaluated simultaneously the e�ect of theseoptimization rules is combined to reduce the amount of work even further. InSection 4 we investigate the e�ect of taking all pairwise joins into account. Thisevaluation strategy is called parallel bottom-up evaluation.8.2 Relational algebra propertiesDynamic query processing is a novel approach to which old techniques based onalgebraic equivalence can be reused. This section focuses on these issues andplaces these properties in the context of dynamic query processing. In the nextsection a new technique is introduced and analyzed in detail.Given the relational algebra expression and semantics preserving rewrite rules,a series of equivalent expressions can be produced for any query expression. Inthe following we summarize the signi�cance of the communicative, associative,and distributive properties of the relational operations on dynamic query opti-mization.8.2.1 Commutative operationsFor a commutative operation the result of the operation does not depend onthe order of the left or right operand. Interchanging them does not a�ect theoutcome of the operation. An example of such operations are the join, intersect,and union operators.A [B � B [AA \B � B \AA 1 B � B 1 AFor dynamic query optimization in a main-memory context this property canbe used to reduce the cost for operation evaluation. For instance, in [Bra84]it was shown that hash-based implementation of the relational operations havea superior performance over comparison based implementation schemes. Ingeneral these algorithms consist of two phases: a hash phase and a probe phase.In the hash phase a hash table is built on the �rst operand. The size of thehash table and the quality of the hash function determines the length of thecollision lists associated with each hash entry.In the probe phase the hash table is used by calculating for each elements ofthe second operand its hash value and evaluating the appropriate action whena matching element in the collision list is found.Obviously, the cost of the hash phase and probe phase is di�erent and dependson the size of respectively the �rst and second operand relation. For instance

8.2. RELATIONAL ALGEBRA PROPERTIES 89it turns out that in general it is more e�cient to build a hash table on thelargest operand and iterate over the smaller operand in the probe phase (Seealso Chapter 11).8.2.2 Associative operationsAn operator is called associative if the result does not depend on the executionorder. Of the relational operations, the join, union and intersection operationare associative. This property is summarized in the following equations:(A [B) [C � A [(B [C)(A \B) \ C � A \ (B \C)(A 1 B) 1 C � A 1 (B 1 C)The associative property of the join operation leads to the most importantissue in query optimization: join order. The join operation is a relative expensiveoperation. Furthermore, the processing cost depends on the operand size and isin the worst case of the order O(n2). To determine an optimal join order it istherefore necessary to have reliable estimates of the intermediate results. In theDQP scheme these estimates are made regularly (after each operation) and aretherefore more reliable than the estimates that are made only once in the SQPscheme.In dynamic query processing the associative property of the join operationleads to a design, where the join order is determined at run-time. Consequently,the query speci�cation is general enough to allow many execution orders to beproduced.8.2.3 Distributive operationsThe distributive property expresses the fact that an operation can be distributedover a speci�c other operation. In the following equations we see that intersectionoperation is distributive over the union operator and visa-verse. Furthermore,the join operation is distributive over the union and intersection operation.(A \ B) [C � (A [C) \ (B [C)(A [B) \ C � (A \ C) [(B \ C)(A \ B) 1 C � (A 1 C) \ (B 1 C)(A [B) 1 C � (A 1 C) [(B 1 C)Query parallelization heavily relies on this distributive property of the joinoperation. Both in SQP and DQP architectures, a query can be parallelized byhorizontally fragmenting the operand relations. Consider for instance the situa-tion where relation A is fragmented into n pieces. The query is then transformedinto the following:A 1 B = (A1 [A2 � � � [An) 1 B

90 CHAPTER 8. TASK ELIMINATIONTaking advantage of the distributive property it is translated into n join op-erations to be executed in parallel (once a copy of the relation B is present oneach processor).(A1 [A2 � � � [An) 1 B = (A1 1 B) [� � � [(An 1 B)8.2.4 Projection and selectionThe projection and selection operation are relatively cheap to perform. Further-more, they have in common that they reduce their operand relations, either insize (selection) or in the number of attributes (projection).Consequently, it is generally considered to be a good heuristic to performprojection and selection operations as early as possible. The equations belowstate a few equivalence relations, that can be used to push the projection andselection operators down the query tree. The terms [f] and [g] denote setsof projection attributes. The symbols p and q are used for selection or joinpredicates. The function attr applied to a predicate or relation identi�es the setof attributes used in the predicate or relation.�p(�q; R) � �p^qR�[f](�[g]R) � �[f]R ^ f � g�p�[f]R � �[f]�pR ^ attr(p) � f�p(R1 [R2) � (�pR1) [(�pR2)�p(R1 1q R2) �! R1 1p^q R2R1 1p R2 �! �qR1 1r �sR2 ^ attr(q) � attr(R1)^attr(s) � attr(R2)8.2.5 Semantic propertiesThe key to dynamic query optimization form the semantic properties of the fourbasic binary operations: union, intersect, join and di�erence. In particular, theirrelationship with the empty set. These properties give rise to two di�erent kindsof optimization techniques: task simpli�cation and task elimination.In the task simpli�cation technique, operations are omitted from the taskexecution schedule, if it is clear that they will not add or remove tuples from anintermediate result. This technique is based on the following properties of theunion and set di�erence operation:A [; �! A (8.3)A n ; �! AThe Query Scheduler decides upon detection of an empty intermediate resultto simplify the query tasks involving these segment combinations, which producethe empty result. This results in a reduction of the task processing time and ina reduction of segment transfer.

8.3. TASK ELIMINATION 91Example 8.1 Consider the task T on fragments P;Q;R, and S de�ned by thefollowing equation:T (P;Q;R; S) = P 1 Q n R 1 SIf during processing it turns out that for a speci�c combination of fragments(r1; s1), that r1 1 s1 = ;, then all remaining tasks identi�ed by (px; qy; r1; s1)can be calculated using the following simpli�ed task expression:T (P;Q) = P 1 QThus saving both fragment I/O and CPU time to calculate r1 1 s1.In practice this technique improves the average task execution time onlymarginally, as the cost of evaluating these operations, when one of the operandsis an empty set, is relatively low. We will not discuss this technique any further.The following properties 8.4 form the basis of the task elimination technique.A 1 ; �! ; (8.4)A \ ; �! ;Task elimination uses the occurrence of empty intermediate (partial) results toreduce the number of outstanding tasks. For instance, if for the query S 1 R 1 Tthe Query Evaluator discovers that the intermediate result s1 1 r2 is empty, itreports this observation to the Query Scheduler, which then removes all remain-ing tasks s1 1 r2 1 ti from the task table. Note that in a static/pipelined queryprocessing environment s1 1 r2 need not be a combination which is executed.In the remainder of this chapter we will discuss and analyze the e�ectivenessof this technique in detail.8.3 Task eliminationIn this section we determine the potential savings that can be obtained by taskelimination. The e�ectiveness of this technique is determined by the fractionof empty intermediate results. As the detection of empty intermediate resultsdepends on the evaluation order of the operations in the query, we have alsoexamined the e�ect of using a left/right-deep tree and our own parallel bottom-up evaluation technique on the elimination factor. The results of this exercisecan be found in Section 8.4.The fraction of empty intermediate results or elimination factor (e), stronglydepends on the relational operation and the attribute distribution of the partic-ipating relations. The expected value of the elimination factor (e) for a binaryoperation
 between two fragmented relations A and B can be expressed in theprobability distribution P (i; j) for empty intermediate results and the numberof fragments of the relations nA and nB. P (i; j) is de�ned as the probabilitythat the result of Ai
Bj is empty. Thus:

92 CHAPTER 8. TASK ELIMINATIONP (i; j) = ProbfjAi
Bj j = 0g (8.5)E[e] = 1nAnB Xi;j P (i; j) (8.6)A parameter of importance is the fragment size, because it strongly in
uencesthe elimination factor. This can easily be seen by considering the extreme cases.If the fragment size equals the relation size, the elimination factor is zero, becausethe join result is not empty. If on the other hand each fragment consists of asingle tuple, the elimination factor equals max(jAj; jBj)=jAj � jBj.On one hand we expect the elimination factor to increase as the fragment sizedecreases, because the probability of an empty result increases, but on the otherhand it also increases the number of tasks, which has a decreasing e�ect on theelimination factor.Furthermore, the fragment size determines the processing cost of a task andthe communication cost for transporting the fragments between processors. Be-cause it is not possible to present a general cost model for relational queries,we have determined the total processing cost for the speci�c, commonly used,equi-join query.Before we derive the processing cost for a k-way equi join, we �rst determinethe elimination factor for a single join operation A 1A:a=B:b B. Without loss ofgenerality we assume for the remainder of this chapter that the join attributedomain is a subset of the natural numbers. Attribute a is a key attribute ofrelation A and assumes values in the range [1; � � � ; cA]. The relation A is rangepartitioned over its key attribute a into na fragments Ai containing p tupleseach, so that the key attribute a of fragment Ai ranges over the values [pi +1; � � � ; p(i+1)]. The relation B is also range partitioned on its key attribute. Weassume that the distribution of the key attribute of B and its non-key attributeb are independent. The fragments Bj also contain p tuples. The attribute valueb is distributed according to a certain probability distribution function �(b).To determine the elimination factor E[e], we �rst express the probability dis-tribution P (i; j) in the probability distribution �(b). For this we �rst determinethe match probability Pm, which is the probability that the join result of twofragments A and B is not empty. A match occurs if an attribute value b of frag-ment B lies within the range of key attributes [pi+1; � � � ; p(i+1)] of fragment A.Because the attribute values b are uniformly distributed over the B fragments isthe match probability Pm(i; j) = ProbfjAi 1 Bj j > 0g independent of the choiceof the B fragment. The match probability can then be expressed as follows:Pm(i; j) = Pm(i) = p(i+1)Xb=pi+1�(b) (8.7)Because Pm(i) is the same for all the fragments of B, we �nd the followingexpressions for P (i; j) and E[e]:

8.3. TASK ELIMINATION 93
0

20

40

60

80

100

0 20 40 60 80 100

A

f
r
a
g
m
e
n
t
s

B fragments

Uniform

0

20

40

60

80

100

0 20 40 60 80 100
A

f
r
a
g
m
e
n
t
s

B fragments

Zipf

0

20

40

60

80

100

0 20 40 60 80 100

A

f
r
a
g
m
e
n
t
s

B fragments

Normal

Figure 8.2: Distribution of non-empty join tasks for respectively Uniform,Zipf(0.5) and Normal(5,000;2,500) attribute distributionsP (i; j) = P (i) = (1� Pm(i))p (8.8)E[e] = 1nAnB Xi;j P (i; j) = 1nAnB nBXi P (i) = 1nA Xi P (i) (8.9)In the following paragraphs we calculate the elimination factor for the situa-tion where the foreign key attribute B:b follows the Uniform, Normal and Zipfdistribution. Because the query is an equi-join operation on a key attribute, thequery result has the same cardinality as the referencing relation B. Thereforethe elimination factor can be used to compare the optimization technique fordi�erent data distributions.To show the clustering property of the data distributions, we have calculatedequi-join queries for these data distributions on two relations containing 10.000tuples divided over 100 fragments, and presented the result in scatterplots (Fig-ure 8.2). Each dot represents a non-empty task result. These graphs immediatelyprovide visual evidence of the potential savings of the task elimination for Zipfand Normal join attribute value distributions.Uniform distributionThe uniform distribution is used to �nd the worst case behavior for the dynamicquery optimization. The reason is that the data contributing to the query resultis not clustered, which implies a low task elimination factor for moderately sizedfragments. The probability distribution function of the uniform distribution isa constant �(x) = 1cA . From this distribution we can derive the following:Pm(i) = pcAP (i) = �1� pcA �pE[e] = �1� pcA �p

94 CHAPTER 8. TASK ELIMINATIONNormal distributionThe Normal distribution is also used by Schneider and DeWitt [SD89] in theirperformance analysis of join algorithms. This attribute distribution is chosenfor our analysis, because it could occur in scienti�c databases for attributes thatrepresent measurement data. The normal distribution N(�; �) is de�ned by:�(x) = 1�p2� exp �(x� �)22�2Because this is a distribution of a continuous function we determine the prob-ability Pm(i) as follows:Pm(i) = Z p(i+1)pi 1�p2� exp �(x� �)22�2 dxZipf distributionIn actual databases, the attribute distribution will more likely follow the Zipfdistribution [ST89, KNT89]. The Zipf probability distribution function Z(c) forattribute values in the range [1; � � � ; cA] is de�ned as:�(x) = Hc�1x�cHc = cAXk=1 k�cThe c parameter is called the decay factor of the distribution. For c = 0the distribution is uniform, if c = 1 the distribution equals the classical Zipfdistribution. The distribution of personal income follows Z(0:5).Data distribution comparisonGiven the Normal, Zipf and Uniform probability distribution functions and equa-tions (8.8) and (8.9) we have calculated the elimination factor as a function ofthe fragment size for di�erent distribution parameter settings (See Figures 8.3and 8.4). The Uniform distribution is included in Figure 8.3, because it is equalto a Zipf(0) distribution.The graphs show that the elimination factor is a monotonically decreasingfunction of the fragment size. Furthermore, even the worst case distribution(Uniform) has a potential to reduce the number of tasks for fragment sizessmaller than 2.5 % of the relation size. Finally, we �nd that the elimination factoris sensitive to the parameters of the distribution. As the attribute distributionbecomes more clustered, the task elimination technique becomes more e�ectiveover a larger range of fragment sizes (Cf. Z(0:5) and Z(1:0)).

8.4. MULTIPLE JOIN EVALUATION 95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

e
l
i
m
i
n
a
t
i
o
n

f
a
c
t
o
r

fragment size [%]

1
2
3

1 Z(0)(= Uniform)2 Z(0:5)3 Z(1:0)Figure 8.3: Elimination factor (Zipf) 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

e
l
i
m
i
n
a
t
i
o
n

f
a
c
t
o
r

fragment size [%]

1
2

1 N(0:5cA; 0:15cA)2 N(0:5cA; 0:25cA)Figure 8.4: Elimination factor (Normal)8.4 Multiple join evaluationIn a multiple join operation, the occurrence of an empty partial join result willalso result in the removal of tasks. In this section the total task elimination Ekof an k-way equi-join is determined given the elimination factors ei of the (k�1)partial joins. First an expression for the elimination factor for the multiple join isformulated which is then used to calculate the total processing cost for a speci�c3-way and 4-way equi-join.The evaluation order of the join operations has a strong in
uence on the totalelimination factor. We considered two di�erent evaluation methods: sequentialevaluation, which corresponds to the traditional left-deep and right-deep querytree, and our own method parallel bottom-up evaluation.In the following paragraphs formulas are derived for a general k-way equi-joinquery. In the analysis each joined relation Ri is partitioned into ni fragments.For each method we derive a formula for the number of tasksNk that are removedby the task elimination technique. The total task elimination factor of the joinquery is obtained through division by the total number of tasks Ntask:Ek = NkNtask (8.10)Ntask = kYi=1ni (8.11)Sequential evaluationIn the sequential evaluation method the query is either represented by a left-deepor a right-deep join tree. The intermediate result at each stage of evaluation canbe empty (Figure 8.5).Thus the query evaluator sends the query scheduler information that combi-nations of two, three, or more fragments result in an empty query result. For a

96 CHAPTER 8. TASK ELIMINATION
1R S T UR 1 S 1 T = ;R 1 S = ; 1 1

Figure 8.5: Sequential evaluation
1S 1 T = ;R 1 S = ; R S T U1 1 1 T 1 U = ;

Figure 8.6: Parallel bottom up evalua-tioncombination of two fragments a large number of tasks can be removed. However,if the combination is more speci�c, less tasks can be removed. For instance, fora 4-way join, the event jR1 1 S1j = 0 results in the removal of n3n4 tasks1.Whereas the event jR1 1 S1 1 T1j = 0 reduces the number of tasks only withn4 tasks. The number of eliminated tasks for a 3-way and 4-way join operationcan be determined using the elimination factors of the partial joins e1 and e2:N3 = e1n1n2(n3 � 1)N4 = e1n1n2(n3n4 � 1) + (1� e1)e2n1n2n3(n4 � 1)Generally, of a k-way join e1n1n2 tasks result in empty R1 1 R2 combinations,because of the �rst join operation. This results in e1Ntask task eliminations. Thenext operation results in (1�e1)e2Ntask eliminations, caused by (1�e1)e2n1n2n3empty task results. Summing all terms until the (k � 2)-th join operation we�nd for Nk, the number of tasks that are not evaluated:Nk = k�2Xi=10@Yj<i(1� ej)1A ei kYl=1nl� k�2Xi=18<:0@Yj<i(1� ej)1A ei k�1�iYl=1 ni9=; (8.12)Parallel bottom-up evaluationIn the parallel bottom-up evaluation method, all possible join combinations areevaluated in parallel and the results are subsequently combined (Figure 8.6).The scheduler is informed if the result of a join for any combination of twofragments is empty. If such an event occurs, the scheduler removes the taskscontaining this fragment combination. The number of eliminated tasks a 3-wayand 4-way join operation is thus given by:1Note that at least one task had to be executed to generate this event

8.5. MULTIPLE JOIN PROCESSING COST 97N3 = (e1 + (1� e1)e2)n1n2n3n4 �max(n1n2; n2n3)N4 = e1n1n2n3n4 + (1� e1)e2n1n2n3n4+ (1� e1)(1� e2)n1n2n3n4 �max(n1n2; n2n3; n3n4)If we generalize this for the k-way equi-join we �nd the following expressionfor Nk, the number of eliminated tasks:Nk = k�1Xi=10@Yj<i(1� ej)1A ei kYl=1nl �max(n1n2; � � � ; nk�2nk�1) (8.13)Because all join combinations are evaluated, more work is done than actuallyrequired. However, the idea is that the additional work invested in a singlesubquery evaluation will result in a higher total elimination factor and, thereby,in a reduction of the total amount of work.Comparison of the evaluation techniquesUsing Equations (8.10) and (8.11) and the expressions for the number of elim-inated tasks (8.12) and (8.13) we have calculated the elimination factor for a4-way equi-join for the Normal, Uniform, and Zipf distribution for both eval-uation techniques (See Figures 8.7 and 8.8). These graphs show that for alldistributions the parallel bottom-up evaluation results in a larger eliminationfactor than sequential elimination. The reason for this is that in the paral-lel bottom up evaluation all the possible join combinations are tried, so thatempty join results are detected at an early stage, leading to a larger number ofeliminated tasks.For instance, for a fragment size of 2 % an improvement of 15 % can beobserved for a Zipf(1.0) distribution. However, the gain becomes smaller as thefragment size increases.Calculation of the elimination factor for other multi-join queries show that therange of fragment sizes for which the task elimination is e�ective does not dependon the number of joins, but only on the distribution parameters. However, withinthis range, the elimination factor increases with the number of joins.8.5 Multiple join processing costThe total elimination factor can now be used to calculate the total processingcost for a multiple join query. In the cost model below the assumption is madethat the tasks are evaluated by a single processor. Therefore, it gives an upperbound on the total query cost. When more processors are used by the QueryEvaluator, tasks can be evaluated in parallel, which results in a lower responsetime 2. The following simple cost model can therefore be used to measure thee�ectiveness.2Adding processors in
uences the e�ectiveness of the dynamic query optimization tech-nique, because it could be that a processor is processing a task that would otherwise beeliminated by a task, which is executed in parallel. However, this e�ect is negligible, becauseof the small probability on such an event.

98 CHAPTER 8. TASK ELIMINATION
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

e
l
i
m
i
n
a
t
i
o
n

f
a
c
t
o
r

fragment size [%]

1
2
3
4

1 Normal(0.5cA;0.15cA)/sequential2 Normal(0.5cA;0.15cA)/parallel3 Normal(0.5cA;0.25cA)/sequential4 Normal(0.5cA;0.25cA)/parallelFigure 8.7: E4 Normal distribution
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

e
l
i
m
i
n
a
t
i
o
n

f
a
c
t
o
r

fragment size [%]

1
2
3
4

1 Zipf(0)/sequential2 Zipf(0)/parallel3 Zipf(1)/sequential4 Zipf(1)/parallelFigure 8.8: E4 Zipf distributionThe total query processing cost Cquery for this architecture is determined bythe number of tasks remaining after task elimination (1�E)Ntask and the taskprocessing cost Ctask.Since all tasks are executed on a single processor, each task execution for ak-way join requires at most k fragment transports Ccom(p) to the processor 3and a single multi-join execution Cjoin(p). These latter factors depend on thefragment size p.Cquery = (1� E)NtaskCtaskCtask = kCcom(p) +Cjoin(p)Fragment transport requires a constant cost for network access and OS over-head Caccess and a cost linear in the size of the fragment Ccopy for copying thedata from the network to the processors memory.For the execution cost of the join operation we only give an upper bound.Each of the k � 1 equi-join operations results in at most p tuple combinations.Assuming a hash join algorithm implementation we �nd that the join cost isalso linear in the fragment size. In the �rst phase of the algorithm a hash tableis constructed for one of the join operands, and in the second phase this hashtable is probed for each join attribute value of the second operand.Ccom(p) = pNbytesCcopy +CaccessCjoin(p) = (k � 1)pChashIn Table 8.1 the parameter setting for our target architecture is given, consist-ing of MicroVax workstations, using the Amoeba distributed operating system.Evaluation of the formulas for these two evaluation methods on a 4-way equi-join operation results in the total query processing cost as shown in Figures 8.93If fragments are properly cached by the processor(s), at most 1 fragment transport isrequired.

8.5. MULTIPLE JOIN PROCESSING COST 99Caccess operating system overhead 1 msecCcopy data transfer rate 1msec/1kChash hash join cost 100�secNbytes tuple size 0.2 kTable 8.1: The parameter setting for MicroVax systems running Amoeba
10

100

1000

10000

100000

1e+06

1e+07

1e+08

0 200 400 600 800 1000

T
o
t
a
l

q
u
e
r
y

c
o
s
t

[
s
e
c
]

Fragment size

4-way join
4-way sequential

4-way parallel

Figure 8.9: Cquery for a 4-way joinand Zipf(1.0) distribution 10

100

1000

10000

100000

1e+06

1e+07

1e+08

0 200 400 600 800 1000

T
o
t
a
l

q
u
e
r
y

c
o
s
t

[
s
e
c
]

Fragment size

4-way join
4-way sequential
4-way parallel

Figure 8.10: Cquery for a 4-wayjoin and Normal(5,000;1,500) distri-butionand 8.10. These graphs present the total query processing cost as a functionof the fragment size for the Normal(5,000;1,500) distribution and the Zipf(0.5)distribution. The elimination factors were obtained using the formulas of Section8.4, and the cardinality of the relations was set to 10,000.The combination of task elimination and the cost model illustrate the per-formance gain to be expected from dynamic query processing. The top curvein these graphs represents the total processing cost without task elimination.The result of the calculation shows that within the e�ective range of the taskelimination technique a reduction of the total query cost can be obtained as longas the fragment size is small enough. Outside the e�ective range the total queryprocessing cost decreases as the fragment size increases. Therefore, for this sim-ple cost model if enough memory is available for query evaluation, it is better tochoose a large fragment size outside the e�ective range of task elimination. How-ever, if parallel query execution is considered, large fragment sizes lead to longcommunication delays at the query processors, which result in a larger responsetime. Therefore, more research has to be done to study the e�ect of parallelexecution on the e�ectiveness of the task elimination optimization technique.Furthermore, calculations on other multi-join queries show that task elimina-tion becomes more e�ective as the number of joins increases and the attributedistribution becomes more clustered.

100 CHAPTER 8. TASK ELIMINATION8.6 ConclusionIn this chapter, we presented the opportunities provided by the semantic proper-ties of the relational operations for dynamic query processing. Furthermore, wepresented a detailed analysis of a dynamic query optimization technique, calledtask elimination. A probabilistic model has been used to estimate the potentialgains for di�erent data distributions.This analysis shows that the task elimination technique can lead to signi�cantreductions in the amount of query tasks that have to be processed. The e�ec-tiveness of the task elimination technique depends on the attribute distributionand the fragment size. For a real-life distribution, like the Zipf distribution theresults are promising. If enough memory is available the fragment size should bechosen as large as possible. However, when only a limited amount of memory isavailable, task elimination and a small fragment size will reduce the total pro-cessing cost. Finally, when using task elimination, it was shown that the parallelbottom up evaluation method increased the e�ectiveness of the task eliminationmethod.Future research has to generalize the task elimination technique for otherrelational operations. Furthermore, the e�ect of fragment size and fragmentcaching on the response time in a parallel Query Evaluator must be considered.

Chapter 9Task allocation
9.1 IntroductionLoad balancing is a major issue in the design of a distributed computing system.It deals with the question how a limited number of resources can be used toprocess a workload, such that a global cost function is minimized. In a paralleldata base system the resources involved are the processors, the memory, and thenetwork bandwidth. The load balancing issues address in this case the allocationof sub-queries to processors, the bu�er management policy on each processor andglobal data allocation. The goal of the load balancing mechanism is to minimizethe query response time or to maximize the query throughput. In this chapterwe consider the �rst objective: to minimize the response time.In a parallel data base system, the response time can be reduced by executingsub-queries in parallel. Unfortunately, the response time cannot be in�nitelyreduced by reducing the task granularity and executing them in parallel, becausepart of the computation is inherently sequential. For instance, the data re-partitioning and the scheduling overhead are often sequential. Therefore, theamount of e�ective parallelism that leads to a reduced response time is limited.Furthermore, query execution in a parallel system soon becomes I/O boundas more processors are used to evaluate the query [Mur89] against data that isnot locally cached. The throughput is limited further by the rate by which thequery result can be delivered to the application.In the proposed DQP architecture a query is executed by fragmenting the data�rst and to calculate the query on all these fragment combinations. As the tasksrefer to the same global set of fragments, large fragment bu�ers can considerablyreduce the amount of communication required by retaining fragments in local101

102 CHAPTER 9. TASK ALLOCATIONmemory. As the available memory is limited, a bu�er manager must decide atrun-time, which fragments to keep and remove.Equally important for the e�ective use of the data bu�ers is the allocation oftasks to processors. Ideally tasks that have a number of fragments in common,are executed on the same processor, shortly after one other to maximize thecache hit ratio. In this chapter we present a pilot study of several task allocationalgorithms and bu�er management strategies.9.2 The I/O bottleneckIn Chapter 8 the relation between the fragment size and the total number oftasks was investigated taking into account the e�ect of task elimination. Fur-thermore, a simple cost model for a k-way join operation was introduced to getan impression of the total query execution time. In this section, this cost modelis extended to incorporate the e�ect of bu�er management and task allocationon the average task execution time.Before discussing speci�c task allocation and bu�er management strategies weintroduce the cost factors to be considered for task execution. We de�ne the taskevaluation time Ttask as the time spent by a processor to execute a single task.The task evaluation time can be decomposed into the following cost factors:Ttask = (k +m)Tcom + Texec,where k is the number of input fragments per task, m the number of resultfragments per task, Tcom the time to retrieve or transfer a fragment and Texecthe task execution time.Assuming that a task can only be executed when all data used is locallyavailable, Tcom consists of the time to collect the data from memory at theremote processor, transmit the data through the network, and the time to storethe data in the local bu�er. This cost is generally modeled by a constant delayTa, which models the network access time and the scheduling overhead and acost factor linear in the fragment size, which models the cost for copying thedata to and from the data bu�er.In the following Ta, �c, and S denote respectively the network access time,the network throughput and the fragment size.Tcom = Ta + S�cNote that in a shared-nothing multiprocessor, unless the processors are inter-connected through a point-to-point network, data transfers share a single com-munication medium. Consequently, the data transfers are serialized and limitthe amount of e�ective parallelism. Ultimately, in such a system the networkwill form the bottleneck of the data base system and determine the minimumresponse time.In the expression for the communication time Ta is determined by collisionson the network and process scheduling at both sender and receiver. Therefore

9.3. BUFFER MANAGEMENT 103the network access time depends on the network tra�c. If, for the sake ofargument, we disregard this e�ect then Tcom � S�c . Assuming that the networkis the bottleneck then the upper bound on the maximum task throughput �taskis given by:�task = (k +m)S�cFor a given partitioning the fragment size and the number of tasks to beexecuted is �xed. The query response time is then determined by the taskthroughput. Because the factors m and S are �xed, only two approaches can beconsidered to increase the task throughput of the system:� Increase the network throughput �c; for instance by using a shared memoryarchitecture or customized communication hardware and a point-to-pointnetwork.� Reduce the number of fragment fetches per task k, through data replica-tion or bu�ering and using a large local fragment bu�er. This way thetransmission cost is amortized over a large number of task executions.The �rst approach represents a hardware approach, which is both costly andconsidered to have a limited lifespan. As illustrated by the database machinesdeveloped in the FGCS project. After a few years, the performance of paralleldata base systems built out of o� the shelf components could compete withthese dedicated systems. In this chapter, we address the second alternative. Bylocally storing frequently used fragments, the number of fragment requests canbe reduced signi�cantly, so that the amount of parallelism for a speci�c querycan be improved and the response time reduced.Generally speaking there are two aspects, which determine the e�ectivenessof a bu�er management scheme:� What is put into the bu�er?� What is removed from the bu�er, when the bu�er is full.The former issue is determined in the Goblin architecture by the task allo-cation algorithm of the Query Scheduler. If the scheduler assigns a task to aquery processor, it needs to retrieve the fragments referred to by the task. Thelatter issue is called the bu�er replacement policy. In the following sections we�rst consider bu�er replacement policies and then compare two task allocationalgorithms.9.3 Buffer managementThe bu�er manager controls a pre-allocated amount of memory on each pro-cessor. Furthermore, as Goblin is a main memory architecture a distinction ismade between fragment replicas and fragment copies. To ensure persistency thefragment replicas cannot be deallocated, without creating a replica on another

104 CHAPTER 9. TASK ALLOCATIONsite. Fragment copies are created during query processing and represent eithercopies of persistent fragments or intermediate results.Fragments can either have a maximum size, contain a maximum number oftuples, or be variable sized. The �rst option facilitates memory managementboth for query processing and fragment I/O. The second option is useful foranalysis of the bu�er management scheme. The latter option simpli�es theimplementation and design of the relational operations. In this section we assumethat fragments contain a maximum number of tuples and occupy a maximumamount of memory.The equivalent of a bu�er manager in general purpose operating systems is thepage manager. The page manager decides on the basis of the reference behaviorof the processors workload, which pages can be removed from memory when arunning program references a page that is not in memory. From analysis of thereference behavior of programs it turns out that in general programs display acertain locality of page references. This is considered to be a consequence ofthe imperative programming model. The set of pages at a certain moment inthe execution of the program is called the working set and its size di�ers fromprogram to program. An optimal paging scheme tries to determine the size ofthe working set and keep the working set in memory to minimize the number ofpage misses during the program's execution.In our case the situation is a little di�erent. The scheduler controls the ref-erence pattern of the workload and thereby the amount of locality. An optimalbu�ering scheme should therefore consider, which fragments (cf. pages) can bereplaced from memory and the task allocation algorithm.In the following section we �rst determine the best possible bu�er managementand task allocation technique, and then compare the results with other bu�erreplacement and task allocation algorithms.9.3.1 Optimal bu�er managementThe complete query is expressed as the union of all task results, where eachtask executes the query for a speci�c fragment combination. To simplify theanalysis we assume that the complete query requires to execute the task for allpossible fragment combinations. Each task on k operands can be identi�ed bythe combination of k fragment identi�ers (f1; : : : ; fk) (and its query graph).Example 9.1 Consider a query which uses relations R; S, and T and each rela-tion consists of 2 fragments. Then the query execution involves evaluation ofthe tasks identi�ed by (r1; s1; t1), (r1; s1; t2), (r1; s2; t1), (r1; s2; t2), (r2; s1; t1),(r2; s1; t2),(r2; s2; t1), and (r2; s2; t2).The basic problem addressed in this section can now be stated as follows.Given a collection of tasks T = f(f1; � � � ; fk)jfi � Rig and a fragment bu�er.Find a task allocation algorithm and a bu�er replacement policy that minimizesthe number of bu�er misses.The optimal bu�er management scheme proposed in this section minimizesthe average number of misses required for executing a query consisting of a largenumber of tasks. The objective of the scheme is to maximize the number oftasks that can be executed for a given bu�er size and query.

9.3. BUFFER MANAGEMENT 105Theoretically the minimum number of misses can be computed, given thebu�er size, the number of relations, and the number of fragment partitions. Animportant notion in the analysis is the term bu�er volume, which is de�ned asfollows:De�nition 9.1 The bu�er volume V is the number of tasks that can be evaluatedwith the fragments stored in the bu�er.By de�nition the bu�er volume depends on the number of relations referencedby the query, and the distribution of the bu�er slots over these relations.Example 9.2 If the bu�er contains for a 3-way join query 4 fragments of the �rstrelation, 3 fragments of the second relation and 1 fragment of the last relation, intotal 4� 3� 1 fragment combinations can be formed, resulting in a total numberof 12 task evaluations and by de�nition a bu�er volume of V = 12.If in our example the 8 bu�er slots are divided di�erently over the relations,for instance as 3 � 3 � 2, for the same bu�er size the bu�er volume would be18. In other words in the �rst situation 12 tasks can be executed per 8 fragmentI/Os, while in the second case 18 tasks, an improvement of 50%.The basic idea of the optimal bu�er management scheme is to divide theavailable bu�er slots equally over the operand relations so that the bu�er volumeis maximized. The e�ect of this scheme is summarized in the following theorem:Theorem 9.1 Assuming that:� The set of tasks consists of all fragment combinations.� The task allocation algorithm �rst allocates the tasks that can be formedwith the current bu�er content.� The bu�er replacement algorithm maintains the maximum cache volumefor the current bu�er size.Consider a task with k- operand relations and relation Ri is partitioned intoni relations. Then the number of bu�er misses M per task for the optimal bu�ermanagement scheme and a bu�er size C is given by:M = CV Ntaskwhere: V = dCk eCmodk:b ck ck�cmodkNtask = kYi=1ni

106 CHAPTER 9. TASK ALLOCATION
k=5

1e-05

0.0001

0.001

0.01

0.1

1

10

0 20 40 60 80 100

M

c

k=2
k=3
k=4

Figure 9.1: The average number of bu�er misses per task for optimal bu�ermanagement.Proof 9.1 The �rst assumption ensures that each fragment combination that canbe formed with the fragments in the bu�er is an eligible task. The second as-sumption implies that each task belongs to a distinct bu�er volume. Thereforethe complete task set can be covered by non-overlapping bu�er volumes.By maximizing the bu�er volume the average number of misses per task canbe minimized. For each distinct bu�er volume C fragment fetch operations arerequired. The maximum bu�er volume can be obtained by dividing the bu�erslots over the relations as evenly as possible: k�C mod k relations are assignedbCk c slots and the remaining C mod k relations are assigned dCk e slots. For sucha bu�er slot assignment in total V = �bCk c�k�Cmodk : �dCk e�Cmodk tasks can beexecuted without fetching a new fragment. As a result the average and minimalnumber of misses per task is given by:M = CbCk ck�Cmodk:dCk eCmodkFigure 9.1 displays the average number of misses per task for queries with 2to 5 operands. Note that there are two extreme cases, that are not properlycovered by the previous cost formula:� The bu�er can hold only the fragments for a single task.� The bu�er can hold all the fragments for the complete task setIn the �rst case, the bu�er is initially �lled with the appropriate number offragments. For each following task it is su�cient to replace a single fragment.Thus the average number of bu�er misses per task is given by:

9.4. BUFFER REPLACEMENT TECHNIQUES 107M = k +Ntask � 1NtaskIn the second case, each fragment needs to be loaded in the bu�er at mostonce. Thus the average number of bu�er misses is given by:M = Pki=0 niNtaskTo mimic the optimal bu�er management scheme presented in this section abu�er replacement strategy and task allocation algorithm have been designed,called the Maximum Cache Volume (MCV) and Maximum Cache Hit (MCH)allocation algorithm. In the following sections �rst the bu�er replacement andtask allocation algorithms are presented and �nally the results from a simulationstudy are presented.9.4 Buffer replacement techniquesBefore a task can be completed, it is required that all its fragments are locallyavailable. Each time a fragment is not available, it is requested from the bu�ermanager on a remote site and stored in a slot allocated in the local bu�er. If allthe slots in the bu�er are already occupied, the bu�er replacement must decidewhich fragment to be removed. To avoid loss of valuable data some fragments are�xed, either permanently for persistent fragments, or temporarily for fragmentsthat are required for the current task evaluation.All the bu�er replacement algorithms considered have in common that theydo not remove fragments �xed in memory. Instead, they select a victim amongthe set of non-�xed fragments.9.4.1 Random replacementThe random replacement strategy randomly selects a fragment from the set ofnon-�xed fragments. A disadvantage of this approach is that fragments can beremoved that are required for the next task evaluation. Furthermore, the randombehavior makes it impossible for the scheduler to predict which fragments arestored in the bu�er at a certain moment. Consequently, the task allocationalgorithm cannot take the bu�er content into account to prevent fragment I/O.9.4.2 LRU replacementThe LRU bu�er replacement policy is well known from OS page replacementalgorithms. The idea is based on the locality principle of application programs.A program references only a limited set of pages during a time interval. Thisset is called the working set. The pages from the working set will only changegradually during execution. If the bu�er is large enough to contain the workingset, the LRU algorithm performs well. However, if the working set is slightlylarger than the bu�er, there is a situation where the algorithm performs badly,

108 CHAPTER 9. TASK ALLOCATIONnamely when the program sequentially references all the pages in the workingset, the LRU algorithm removes the page it needs in the near future.In the database application the reference pattern is determined by the taskallocation algorithm. For the LRU algorithm to perform well it is necessarythat the locality principle holds for the reference pattern. It is therefore to beexpected that the LRU algorithm performs best with a task allocation algorithmthat displays locality.9.4.3 Maximum Cache Volume replacementThe MCV replacement algorithm is derived from the optimal bu�ering scheme.It tries to keep an equal number of fragments of the relations in the bu�er. Theidea is that by keeping an equal number of fragments for each relation in thebu�er, the amount of tasks that can be formed is maximized. Thus increasingthe probability of hits for the next task execution. For instance, given a bu�ersize of 12 and a query on three relations, a maximumof 4�4�4 = 64 tasks can beevaluated, using the MCV policy, while the minimumamount of tasks is obtainedby allocating the bu�er slots in an unbalanced fashion, like 10�1�1 = 10 tasks.This method is designed to be combined with the the maximum cache hit taskallocation algorithm, which keeps track of the bu�er contents.9.5 Task allocationWhen a task arrives at a Query Processor the task is queued for execution.First the task operands are retrieved from the local bu�er manager. When alloperands are available the task waits in the ready queue for execution. Therefore,a certain amount of time the task has to wait, either for requested fragments toarrive, or until the query processor is free to process the task1.A load balancing algorithm tries to minimize the average waiting time for atask. In general load balancing algorithms use task allocation and task migra-tion to obtain a good load distribution. Furthermore, as the waiting time alsodepends on the amount of communication required, the second objective of theload balancing algorithm is a reduction of communication overhead.As the tasks are relatively small we do not consider task migration algorithms,but consider only task allocation algorithms. The following three task allocationalgorithms are considered:� Random task allocation.� Sequential task allocation.� Maximum Cache Hit allocation.The following sections present these algorithms in more detail. To reducethe waiting time they share that they assign tasks to query processors with thelowest load �rst. The feedback mechanism continuously reports the load of aprocessors to the scheduler.1The task execution algorithm described in Chapter 10 overlaps task execution with frag-ment I/O.

9.5. TASK ALLOCATION 1099.5.1 Random allocationIn random task allocation, the query scheduler selects a task randomly from thetask table and assigns it to the processor with the minimum load. The advantageof this algorithm is that the query scheduler only requires information on thecurrent load of the query processor.Because the algorithm does not take into account the bu�er contents of thetarget query processor, the average number of misses per task is relatively highfor all the bu�er replacement strategies.9.5.2 Sequential allocationIn sequential task allocation the tasks are allocated to a processor in an incre-mental fashion. This means that two successively allocated tasks di�er in onlya single fragment identi�er. This allocation mechanism results in a certain lo-cality of reference at the query processor and is therefore expected to produceless misses than random task allocation.It requires the query scheduler to order the tasks before they are assigned.If the complete product space of fragment identi�ers must be traversed this isa relatively simple problem that can be solved by numbering the fragments ofeach relation. If the �rst operand speci�es the least signi�cant digit and the lastoperand the highest signi�cant digit, then each task speci�cation is uniquelyidenti�ed by a number.Example 9.3 For a query on relations R; S and T , which are partitioned in re-spectively 20; 30 and 10 fragments, the task (r14; s4; t9) represents the number(14 � 30 + 4) � 10 + 8 = 4248, the next task will be either 4249 or 4247, whichcorresponds to tasks (r14; s4; t9) and (r14; s4; t7), respectively.9.5.3 Maximum Cache Hit allocationUnder the Maximum Cache Hit task allocation algorithm, the scheduler keepstrack of bu�er contents of the local Bu�er Managers. If a QP is available forhandling a new task, the least expensive one (w.r.t. I/O) is selected from thetask table.Thus the query scheduler will �rst assign tasks that can be formed with thecurrent bu�er content. If these tasks are not available, it assigns a task thatrequires only a single fragment retrieval.Example 9.4 Consider the same query as in the previous example. In the MCHallocation scheme the QS knows the bu�er contents for each QP. Let the bu�erof a QP contain the following fragments: fr1; r2; s1; s2; t1g. With this bu�ercontents the following tasks can be formed:Zero fragment requests(r1; s1; t1)(r1; s2; t1)(r2; s1; t1)(r2; s2; t1)

110 CHAPTER 9. TASK ALLOCATIONWhen all these task have been executed, the scheduler selects a task that re-quires a single fragment transport:Single fragment request(r1; s1; tx) x 6= 1(rx; s1; t1) x 6= 1 ^ x 6= 2(r1; sx; t1) x 6= 1 ^ x 6= 2By this task assignment the bu�er content changes so that new tasks can beformed that require zero fragment requests.9.6 Performance comparisonWe have designed a simulation experiment to compare the previously discussedtask allocation and bu�er replacement techniques. In this experiment the aver-age number of bu�er misses per task are measured for each bu�er replacement- task allocation method combination (r; t), where r 2 fMCV;LRU;RNDg andt 2 fMCH;SEQ;RNDg.The measuredmisses per task indicates the average number of fragment fetchesper task. In the experiment we assume that the bu�er is initially empty. Fur-thermore we assume, similar to the optimal bu�er management algorithm, thatthe complete task set is de�ned as the Cartesian product of all fragment combi-nations.The experiment is run on tasks consisting of k operand relations, where eachrelation is partitioned into n fragments. The simulation executes the resulting nktasks by selecting a task from the task set using the task allocation method andsimulating the task execution on the bu�er. For each simulated task executionthe bu�er replacement algorithm determines the number of misses, and for eachfragment to be retrieved the fragments to be removed from the bu�er. Finally,the ratio of the total number of misses and tasks is returned.In runtime overhead these methods can be ordered increasingly for the taskallocation algorithms as: RND � SEQ �MCH, and for the bu�er replacementtechniques as RND � LRU � MCV . Thus the combination (RND;RND)results in the lowest run-time overhead and the combination (MCH;MCV) inthe highest. Obviously, this overhead must be set against the performance gainresulting from a more e�cient use of the bu�er.9.6.1 Cache miss per task ratioIn the experiments we have examined all the possible combinations of bu�erreplacement and task allocation algorithms. For each combination we varied thenumber of operands for each task k, the number of fragments for each operandn and the bu�er size c represented by the maximum number of fragments it cancontain.To visualize the results, the miss ratio is expressed as a function of the relativebu�er size �c. The latter is a derived factor which expresses the bu�er sizefor a measurement as a percentage of the total number of fragments required.Thus: �c = c=nk. For a task on k operands consisting of n fragments the totalnumber of fragments is nk. If the relative bu�er size is 100% each fragmentis retrieved once, independent of the number of tasks. Thus the miss ratio at

9.6. PERFORMANCE COMPARISON 111a 100% relative bu�er size will be the same for each task allocation - bu�erreplacement combination.The results from the experiment on tasks with three operand relations, eachpartitioned into 25 fragments are presented in Figures 9.2 - 9.4.In Figure 9.2 the allocation algorithms are compared in combination with theMCV replacement strategy. As expected result the MCH and SEQ allocationalgorithms in less bu�er misses than the RND algorithm. Furthermore, we seethat under MCV replacement the SEQ allocation is a linear function of therelative bu�er size, because the probability that a fragment is stored in thebu�er increases linear with the relative bu�er size. Finally, we observe that theMCH algorithm exploits large bu�er sizes best.Figure 9.3 con�rms the last observation. However, it does not con�rm ourexpectation that the (MCH,MCV) is the best possible combination.It turns outthat the (MCH,LRU) combination performs better, probably because LRU re-placement removes the fragment that is least recently used in a task execution.The knee shaped curve for the combination of the sequential allocation algorithmis caused by the enumeration property of the algorithm. Each time the bu�ersize is a multiple of the number of fragments per relation, the LRU replacementalgorithm ensures that the most recently used fragments are kept in memory.Because the task allocation enumerates the tasks using the fragment identi�ersfor the operands as base, the least signi�cant digits (or the fragment identi�ersfor the �rst operands) are used most frequently and lead therefore to a bu�erholding all the fragments associated with the �rst few operands.With a random replacement strategy (Figure 9.4) all the allocation algorithmsperform equally bad. This observation underlines the importance of a properbu�er replacement strategy.Figure 9.5 shows that the in
uence of the replacement strategy for the MCHallocation algorithm on the miss ratio is marginal. Both LRU and MCV replace-ment strategies show a good performance.9.6.2 Task allocation and bu�er replacement overheadBecause the QS is responsible for the task allocation is the task allocation over-head the most important factor for the system performance. Therefore, we havemeasured its CPU cost. For the experiment the average number of cycles spentin each of the task allocation and bu�er replacement algorithms was determined.For this purpose code was added to do a basic block count. These basic blockcounts were combined by a pro�ler to determine the total number of cycles spentin each of these algorithms. The results of these experiments are summarized inTable 9.1. This is a small but representative sample of all experiments.The measurements show that the overhead of the MCH algorithm is directlyrelated to the bu�er volume. In the current implementation of this algorithmthe tasks that can be formed for a certain bu�er content are constructed at eachiteration of the algorithm. The overhead can be reduced by generating thesetasks incrementally. Nevertheless, the cost will be linearly related to the bu�ervolume V = cnk.The overhead for the sequential and random allocation algorithms decreasesas the bu�er size increases. Furthermore, it is an order of magnitude less than

112 CHAPTER 9. TASK ALLOCATION
0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

m
i
s
s

c
o
u
n
t

/

t
a
s
k

n*k/c

MCH
RND
SEQ

Figure 9.2: MCV bu�er replacement: k=3, n=25
0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

m
i
s
s

c
o
u
n
t

/

t
a
s
k

n*k/c

MCH
RND
SEQ

Figure 9.3: LRU bu�er replacement: k=3, n=25
0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

m
i
s
s

c
o
u
n
t

/

t
a
s
k

c/n.k

LRU
MCV
RND

Figure 9.4: Random bu�er replacement: k=3, n=25

9.6. PERFORMANCE COMPARISON 113

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

m
i
s
s

c
o
u
n
t

/

t
a
s
k

c/n.k

LRU
MCV
RND

Figure 9.5: MCH task allocation: k=3, n=25
LRU bu�er replacement, k=3, n=10algorithm bu�er size cyclesMCH 10 2418MCH 20 8135MCH 30 21325SEQ 10 438SEQ 20 96SEQ 30 27RND 10 774RND 20 695RND 30 27Table 9.1: The task allocation overhead

114 CHAPTER 9. TASK ALLOCATIONthe overhead for MCH.Consequently, if we consider both the e�ectiveness of the task allocation al-gorithms and its overhead the results are obtained by using the SEQ allocationalgorithm in combination with the LRU or MCV bu�er replacement algorithm.The choice between LRU and MCV depends on the bu�er size in relation to thepartitioning degree.9.7 ConclusionIn this chapter a few important issues related to load balancing were discussed.In particular the importance of data distribution and data declustering wereleft out. Instead the discussion concentrated on bu�er replacement and taskallocation algorithm.We argued that an important di�erence with bu�er management for general-purpose operating systems is that in data base systems it is possible to introducedata locality in the query evaluation process. The optimal bu�er managementscheme presented exploits this feature.Finally, for a selection of bu�er replacement and task allocation algorithms thee�ect on the average bu�er misses per task was measured through simulation.The elaborate MCH - and simple SEQ task allocation algorithm in combinationwith the LRU bu�er replacement algorithm turned out to result in the lowestaverage miss average.Due to the overhead of the MCH algorithm and its in
uence on the totalsystem performance, the SEQ task allocation algorithm is by far the preferredtask allocation algorithm.

Chapter 10Task evaluation
10.1 IntroductionIn this chapter we present the dynamic query optimization algorithm used bythe Query Processor to evaluate tasks. The prime characteristic of the taskevaluation technique is that each task is executed on a single processor using amain-memory bu�er to store intermediate results and relation fragments. Thetask allocation algorithm ensures that tasks consecutively allocated to a proces-sor di�er in only a few fragments enabling the e�ective use of the main-memorybu�er. Therefore the main cost factor to be taken into account for task evalua-tion is CPU cost.The graph representation of the query (See Chapter 6) forms the basis ofthe algorithm. The task evaluation process proceeds by iteratively reducingthe query graph until a single node remains. At each iteration an edge, calledthe target edge, is selected and removed from the graph. At the same timethe relations associated with the edges are changed accordingly, such that theconstraints represented by the target edge propagate to the neighboring edgesand their associated relations in the remaining graph.In the following section we �rst describe an old dynamic query evaluationtechnique based on graph reduction. The Goblin algorithm can be seen as are�nement of this algorithm. We present it in global terms to put the Goblindynamic query evaluation algorithm in a context. The bulk of this chapterdiscusses the Goblin algorithm in detail.115

116 CHAPTER 10. TASK EVALUATION10.2 The Wong-Youssefi algorithmThe Wong-Yousse� algorithm used to process QUEL queries in INGRESS isbased on graph reduction. The following gives a
avor of the algorithm. Thedetails can be found in [WY76]. The algorithm solves project-select-join queriesof the following form:���F1^���^Fn(R1 � � � � � Rk)The query is transformed into a hyper-graph representation of nodes andhyper-edges, i.e. sets of nodes. The nodes in the graph represent the relationattributes involved. The edges are used for two purposes: relation edges groupthe attributes of a single relation and condition edges to group the attributesof the selection conditions Fi. The relation associated with a relation edge E isdenoted by R(E) and the selection condition associated with a condition edge isdenoted by C(E).A well-known optimization heuristic, - used in this algorithm -, is to performprojections as soon as possible in the evaluation process. The notion of distin-guished nodes is used to implement this heuristic. Informally at each point inthe execution this set contains the attributes minimally required to constructthe query result. The initial set contains the nodes of the projection attributes�. During query evaluation join-attributes are added to the set of distinguishednodes when required for sub-query evaluation.To describe the QUEL query optimization algorithm we de�ne the procedureeval. This procedure takes a hyper-graph G and a set of distinguished nodesD and recursively compiles a query program to calculate the relation de�ned by(G;D). By de�nition the program delivers the result relation in result(G). Theprocedure emit constructs the query program by adding statements to it.Depending on the situation the following three actions are performed to pro-duce a query program (See also [Ull89][pages 676-692]):1. If the graph G consists of k disjoint hyper graphsH1; : : : ;Hk, the procedureeval is called recursively on each of the hyper-graphs Hi, where the set ofdistinguished nodes is restricted to the nodes of each sub-graph nodes(Hi).Because the disjoint hyper-graphs represent independent relations, thequery result is de�ned by the Cartesian product of the result obtainedfrom the sub-graphs H1; : : : ;Hk.for i from 1 to k doEi := D \ nodes(Hi)eval(Hi, Ei)doneemit result(G) := result(H1) � � � �� result(Hk)2. If removal of a relation hyper-edge E decomposes the hyper graph into k �1 disjoint sub-graphs, eval is called recursively on the sub-graphs and the

10.2. THE WONG-YOUSSEFI ALGORITHM 117query result is found by joining the result of each call and projecting ontothe distinguished attributes. Each relation hyper edge F , which intersectsE, is semi-joined with R(E) as an optimization step.foreach F in G doemit R(F)>< R(E)donefor i from 1 to k doEi := (E [D) \ nodes(Hi)eval(Hi,Ei)doneemit result(G) := �D(R(E) 1 result(H1) 1 � � � 1 result(Hk))3. If a condition hyper-edge E is removed, the query result is found by callingeval on the resulting sub-hypergraph and evaluating the selection condi-tion C(E) on the result. Let H denote this subgraph, then the query isevaluated as follows:E := (E [D) \ nodes(H)eval(H,E)emit result(G) := �D�C(E)(result(H))At each graph reduction step, if the graph does not consist of the union disjointgraphs, a target edge is selected and one of the above actions is performed whenappropriate. The authors consider the selection of the target edge a crucial issuein the optimization strategy. Their solution is based on the following heuristicsrules that are applied in decreasing order of priority:� Relation edges that are small (in cardinality) and intersect only one ormore relation hyper-edges receive the highest priority for removal. Theserelations are semi-joined with their intersecting relations and potentiallyreduce their size.� Relation edges that represent cut edges of the graph are preferred. Thisheuristic favors programs that use e�cient decomposition joins [Ull89][page676] over programs that use sequences of two-way joins.� Remaining relation edges that intersect only relation edges.� Condition edges receive the lowest priority, because their removal can resultin a set of disjoint graphs, leading to the calculation of a Cartesian productof the result of each sub-graph.The use of heuristics is an important weakness of this algorithm. The assump-tions on which these rules are based do not always hold and can therefore result

118 CHAPTER 10. TASK EVALUATIONin a sub-optimal execution. The Goblin task execution algorithm is based onthe graph reduction paradigm found in the Wong-Yousse� algorithm, but it isre�ned to take the actual cost of the operations and the Goblin architecturalfeatures into account.In the following section we �rst point out the major di�erences between thetwo algorithms. Second, we present the Goblin task execution algorithm andillustrate the algorithm using the Mail example. Finally, we discuss the criteriathat control the evaluation order.10.3 Goblin task evaluation issuesThis section discusses the main di�erences between the Wong-Yousse� algorithmand the Goblin task evaluation algorithm. They are related to the optimizationstrategy, the data model, and the reuse of intermediate results.10.3.1 Cost based versus heuristicThe QUEL query optimization algorithm is driven by simple heuristics. Thismeans that the the join order in expressions like R(E) 1 result(H1) � � � 1result(Hk) is selected randomly. This leads to possibly sub-optimal queryevaluation plan.In contrast, the Goblin task evaluation algorithm is based on up-to-date costinformation. For each iteration step of the algorithm the best possible choice ismade on the basis of cost estimates and data availability. The latter is a resultfrom skewed data arrival in a distributed query processing architecture.Furthermore, to overlap fragment I/O with query processing, a task is takeninto execution even though not all the fragments are already available.10.3.2 Query result representationThe Wong-Yousse� algorithm is designed to execute queries on n-ary relationsand produce the query result as an n-ary relation. In Goblin the query result isrepresented by a set of binary relations, - pivot relations -, which are related bya single pivot attribute. In other words, the decomposed storage model is alsoused to represent the query result.This choice eliminates projection cost from the task evaluation. If an ap-plication accesses only a sub-set of the projection attributes, it merely has toretrieve the associated pivot relations. Using these relations it can then easilyreconstruct the data into the required format. This approach largely o�-loadsthe reconstruction of a query result to the application site. It is based on theassumption that result reconstruction is cheap in main-memory.Furthermore, the relational operations use and produce binary relations only.This allows for a more e�cient implementation of these restricted operationsthan can be obtained for more general operations handling n-ary relations.10.3.3 Reuse of intermediate resultsFinally, the QUEL algorithm is designed to execute a single query, while inGoblin a large number of similar queries are executed concurrently. Therefore,

10.4. NOTATION AND TERMINOLOGY 119the former does not take the overlap that exists between query tasks into account.Yet, most tasks have some fragment combination in common, and, therefore, canuse the same intermediate results.The Goblin task evaluation maintains intermediate results in a bu�er for reuse.During task evaluation the bu�er content is �rst checked to see if the result ofa reduction step is already available. For instance, the bu�er is searched for thetask fragments in the initialization phase.To summarize, the Goblin task evaluation algorithm is a cost-driven dynamicquery optimization scheme based on graph reduction which allows the reuse ofintermediate results. The algorithm consists of an initialization phase, a graphreduction phase, and a pivot phase. In the following sections an overview ispresented of the evaluation scheme and the di�erent phases are discussed indetail.10.4 Notation and terminologySimilar to the task generation process (Chapter 7), task execution is drivenby a graph representation of the query. For task execution the query graphis extended with a cost function, which determines for each edge the cost forremoving it from the graph. The query graph is thus represented by the �ve-tuple G = hN;E;A; card; costi, with N the set of nodes to represent attributesand constants, E a set of (undirected) edges E, and A the set of projectionattributes, or attribute nodes. The other nodes are internal nodes or constantnodes if they refer to constants. The functions card : E ! IN and cost : E ! INassociate a cardinality and reduction cost with the edges. Furthermore, eachedge is either a relation edge or a condition edge. The relation and conditionassociated with an edge (x; y) is denoted R(x; y) and C(x; y), respectively. Thenumber of edges connected to a node, i.e. its degree, is denoted as d(x). Tosimplify the following expose we assume that the query graph consists of a singleconnected component.A task is speci�ed by its query graph and edge assignment. The edge assign-ment associates edges with fragments of the corresponding relations. If F de-notes the set of fragments, the task is completely de�ned by the pair T = hG; ai,where a : E ! F associates a fragment with each edge. Note that each sub-graph of G with its associated edge assignment speci�es a sub-query.The task result is represented by binary relations, called pivot relations, onefor each attribute in A. These pivot relations identify the possible values for theprojection attributes and relate them through a pivot attribute1. Thus relatedobjects (i.e. satisfy the constraints speci�ed by the query graph) have the samepivot attribute.If a node is associated with a pivot relation it is a pivot node, otherwise it isa single node. Two pivot nodes are related if their pivot relations use the samepivot attribute. The set of related pivot nodes is called a pivot graph.Example 10.1 We use the Mail query graph to illustrate these concepts (See Fig-ure 10.1). The graph contains two pivot graphs. In the pivot graph PGq con-1In the object oriented terminology it is called an object identi�er

120 CHAPTER 10. TASK EVALUATION
CP

L

q2

q3

q4

pivot x

r1

r2

r3

letter1

letter2

letter3

pivot L

q1

q2

q3

q4

Paris

Paris address1

London

Brussel

q1

"Paris"

x == "Paris"

kidsaddresscity

senderreceiver

x y

PGq

PGr

pivot y

address2

address3

address4Figure 10.1: Pivot relations and pivot graphstaining the pivot nodes x and y the pivot relations are related through the pivotattribute q, and in PGr by attribute r.We can now describe the Goblin evaluation algorithm in detail, starting withgraph initialization followed by the graph reduction algorithm.10.5 Graph initializationThe graph initialization encompasses binding of the graph with the actual taskparameters and the initialization of the cost factors for the graph edges.In Goblin the binary relation fragments are distributed over the query pro-cessor pool. During the initialization phase the query processor initializes thecardinality and cost function for the speci�c task by identifying the fragments(and intermediate results) locally available.The remaining fragments are retrieved from remote query processors. Thecorresponding operators are inhibited until their operands arrive to enable taskexecution to overlap with fragment I/O.The relation edges are labeled by the cardinality of the corresponding frag-ments. Furthermore, the CPU cost to remove each edge from the graph isestimated. This cost estimate directly re
ects the reduction actions involved.Its discussion is therefore delayed to Section 10.8.The binding algorithm discussed in Chapter 7 ensures that each projectionattribute node is connected to at least one relation edge. This way the querygraph contains all information necessary to solve the query.10.6 Graph reductionThe graph reduction algorithm selects and removes a target edge from the querygraph at each iteration. In the process it generates pivot relations for the nodes

10.6. GRAPH REDUCTION 121connected to the target edge, the target nodes. The generated pivot nodes arerelated and belong therefore to the same pivot graph.Intuitively, the pivot relations represent the solution to the sub-query iden-ti�ed by the pivot graph. The constraint represented by the target edge ismaterialized in the pivot relations. When two pivot graphs are combined, theconstraint implied by the target edge connecting them is propagated to the pivotrelations contained in the sub-graphs. The pivot relations are frequently renum-bered to ensure that after merging two pivot graphs they have the same uniquepivot attribute. This is done using the mark operation � which extends itsoperand relation with a unique new pivot attribute.The target node type, target edge type and the presence of pivot relations de-termine the operations to be performed when the target edge is removed.The target node can either be an attribute node, an internal node, or a con-stant. Their pivot relations form the task result. The query graph is completelyreduced when it contains only the attribute nodes. The internal nodes are partof the query graph but do not occur in the reduced query graph. The pivotrelations created for these nodes are therefore dropped once their constraint ispropagated to the pivot relations of all their neighbors. Constant nodes specifyselection conditions. Once the condition is evaluated they are removed.The target edge type speci�es a constraint i.e. a condition- or a relation edge.Removal of a condition edge implies either a theta-join operation, if the edgeconnects two attribute nodes, or a selection, if the edge connects an attributenode to a constant node. Removal of a relation edge results in the evaluation ofan equi-join operation.In the following subsections we use the target edge type to classify the di�erentactions performed by the algorithm. First we consider condition edges connectedto a constant. Second, condition edges between attribute or internal nodes areconsidered. They lead to theta-join operations. Finally, we consider relationedges.10.6.1 SelectionConsider the target edge between an attribute node and a constant node denotedby x and c, respectively. The condition for the target edge (x; c) is representedby C(x; c).The target edge puts a constraint on the domain of x. If x is a pivot node,i.e. a partial result, this domain is always made explicit in a pivot relation.If x is still a single node, the domain is determined by taking the intersectionover the domains of the incident relation edges. Fortunately, it is not necessaryto calculate this intersection. It su�ces to select one relation edge, apply theselection condition, and use the result to construct the pivot relation for x. Inthe following we �rst consider the case that x is a single node, then we presentthe actions involved if x is a pivot node.� If x is a single node, then there is at least one incident relation edge. Thisis guaranteed by the binding phase in the task generation algorithm. LetR(w; x) represent this relation, then we can determine the pivot relationP (x) as follows:

122 CHAPTER 10. TASK EVALUATIONP (x) := �[p;x]��C(x;c)R(w; x)The graph rewrite is shown below. The constant node and target edge areremoved from the query graph. The created pivot node is shaded and formsa pivot graph containing one node. Furthermore, the attribute values inthe pivot relation P (x) is a sub-set of the attribute values stored in therelation R(w; x) that satisfy the selection condition.
R(w,x)

x2

w x c

C(x,c)

w

R(w,x)

x

P(x)

p1 x2

R(w,x)

w1

w2

x1

x2

R(w,x)

w1

w2

x1� If x is a pivot node it belongs to a pivot-graph. The selection condition canimmediately be applied to the pivot relation P (x), which can then be usedto restrict the relations in the pivot graph. To achieve this the relationsare semi-joined on their pivot attribute with P (x). If x1; : : : ; xk are theother nodes in the pivot-graph then the following actions are performed:P (x) := �C(x;c)P (x)P (x1) := P (x1)>< P (x)...P (xk) := P (xk)>< P (x)The constant node and target node are removed from the query graph.The new pivot relation P (x) is a sub-set of the original pivot relation.This is illustrated in the following �gure:
x2

x x

C(x,c)

c

p1

p2

P(x)

p2 x2

P(x)

x1

10.6. GRAPH REDUCTION 12310.6.2 Theta-joinConsider that the target edge connects two attribute- or internal nodes by acondition edge denoted by x, y and C(x; y), respectively. The condition requiresa theta-join over the attribute domains.Each node can again be a single node or a pivot node. For a single node theattribute domain is de�ned by an incident relation edge. The domain of thepivot node is de�ned by its associated pivot relation. In the algorithm threedi�erent cases must be considered: two single nodes, one single node and a pivotnode, and two pivot nodes. These cases are discussed separately.� If x and y are single nodes then their attribute domains are determined bythe incident relation edges. The edge with the smallest relation is chosento determine the attribute domain of the pivot relations. Let R(w; x) andR(y; z) represent the relations then we can determine the pivot relationsP (x) and P (y) by joining the relations R(w; x) and R(y; z) on the conditionC(x; y). The join result is extended with a pivot attribute p and used toconstruct the pivot relations for x and y. It is possible to determine thepivot relations for node w and z at the same time. However, if thesepivot relations already exist, they must be combined with the new pivotrelations. For simplicity, we will just calculate P (x) and P (y) .T = �(R(w; x) 1C(x;y) R(y; z))P (x) = �[p;x]TP (y) = �[p;y]TThe modi�cation of the query graph is indicated in the following �gure.The nodes x and y form a pivot graph. In the example it is assumed thatthe join condition is satis�ed for the combinations C(x1; y1), C(x1; y2)and C(x2; y2).
R(w,x)

w2

w1

y2

z1

z2

x1

x2

x1

x2

y1

R(y,z)

y2

R(y,z)

y1

w2

w1

R(w,x)

z1

z2

x2 p3

x1

x

R(w,x)

x1

R(y,z)

y

zw

P(x) P(y)

y1

y2

y2

y

p1

p2

p3

p1

p2

w

R(w,x) C(x,y)

x z

R(y,z)

124 CHAPTER 10. TASK EVALUATION� If x is a pivot node and y a single node, then the pivot relation P (x) anda relation edge connected to node y are used to determine the possible at-tribute value combinations. Let R(y; z) denote the relation then the pivotrelation P (y) is found by joining P (y) and R(y; z) on the join condition.The join result is renumbered so that each solution is uniquely identi�edby a new pivot attribute p0. The pivot relations of the other nodes inthe sub-graph of x must also be renumbered to re
ect this change. LetP (x1); : : : ; P (xk) denote these pivot relations then the following operationsare performed:T := �(P (x) 1C(x;y) R(y; z))P (x) := �[p0;x]TP (y) := �[p0;y]TP (x1) = �[p0;x1]T 1T:p=P (x1):p P (x1)...P (xk) = �[p0;xk]T 1T:p=P (xk):p P (xk)This operation is illustrated in the following �gure. Similar to the previousexample we assume that the join condition is satis�ed by the attributecombinations: C(x1; y1), C(x1; y2), and C(x2; y2).
z

z

R(y,z)

R(y,z)

x2

p’2 x1

x1

x

C(x,y)

y

x

y2

y

P(y)P(x)

p1

p2 x2

x1

P(x)

y2

R(y,z)

y1

y2 z2

z1p’1

p’3

p’1

p’2

p’3

R(y,z)

y1

y2 z2

z1

y1� If both x and y are pivot nodes, then their attribute domains are de�nedby pivot relations. The new pivot relations are determined by joining thesetwo domains on the join condition, renumbering the result and projectingthem on the new pivot attribute, x and y attribute.The relations in each pivot-graph must be renumbered. Let the pivot re-lations of the pivot-graph containing x be represented by P (x1); : : : ; P (xm)

10.6. GRAPH REDUCTION 125and, similarly, the pivot relations associated with node y by P (y1); : : : ; P (yn).The pivot attribute for P (x) and P (y) is denoted by p and q, respectively.The new pivot attribute is represented by p0.T := �(P (x) 1C(x;y) P (y))P (y) := �[p0;y]T 1T:q=q P (y)P (y1) := �[p0;y1]T 1T:q=q P (y1)...P (yn) := �[p0;yn]T 1T:q=q P (yn)P (x) := �[p0;x]T 1T:p=p P (x)P (x1) := �[p0;x1]T 1T:p=p P (x1)...P (xm) := �[p0;xm]T 1T:p=p P (xm)If node x or y is an internal node and is not connected to an edge it willnot be used in a future reduction step. Therefore, its pivot relation doesnot have to be constructed and it can be removed from the sub-graph.The reduction step merges the two sub-graphs in a single graph. This isshown in the following �gure.
p’1

p’2

p’3p’3

p’2

p’1

PG

x y

C(x,y)

P(x) P(y)
p1

p2

y1

y2x2

x1

x y

P(x) P(y)

x1

x2

x1 y1

y2

y2

q2

q1

PGPG p’qp

10.6.3 Equi-joinBecause a relation edge can be connected to either a pivot node or a singlenode, the algorithm must consider three di�erent situations: two single nodes,one single node and one pivot node, and �nally, two pivot nodes. The followingparagraphs de�ne the actions that are performed to handle each of these cases.� If both x and y are single nodes then the pivot relations P (x) and P (y)are unde�ned. Because they are connected by a relation edge the solutionof the sub-query de�ned by the pivot-graph consisting of nodes x, y andedge (x; y) is simply R(x; y). The pivot relations are constructed by �rstassigning a unique identi�er to the tuples in R(x; y) using the � (mark)operation, and then by projecting on the pivot attribute p and the x or yattribute2.2In the implementation these three operations are typically combined in a single scan ofthe relation R(x; y).

126 CHAPTER 10. TASK EVALUATIONT = �R(x; y)P (x) = �[p;x]TP (y) = �[p;y]TAfter the operation the two nodes form a pivot graph and the edge con-necting them is removed.
y1 y1

y2
y2
y2

yx

p1

p2

p3

p1

p2

p3
x2

y

P(y)

R(x,y)

x

R(x,y) P(x)

x1

x2

x1

y2

x1
x1� If node x is a pivot node and y is a single node then the pivot relationsP (x) and P (y) are determined by by joining the pivot relation P (x) withR(x; y). The node y is then merged with the pivot-graph associated withx.The join operation can invalidate the uniqueness constraint for the pivotattribute. All the pivot relations associated with the nodes of the sub-graph must therefore be renumbered. Let P (x); P (x1); : : : ; P (xk) denotethe pivot relations associated with node x and p0 a new pivot attribute,then removal of the target edge implies the following operations:T = �(P (x) 1 R(x; y))P (y) = �[p0;y]TP (x) = �[p0;x]TP (x1) = �[p0;x1]T 1T:p=P (x1):p P (x1)...P (xk) = �[p0;xk]T 1T:p=P (xk):p P (xk)This reduction is illustrated in the following �gure.

R(x,y)

yx x y

P(x) P(x)
p1

p2

x1

x2

R(x,y)

x1

x1

x2

y2

y2

y1
P(y)

p’1

p’2

p’3

x1

x1

x2

p’1

p’2

p’3

y1

y2

y2

10.7. A SAMPLE TASK EXECUTION 127If the pivot relation P (x) is not required in the query result and the nodeis isolated (i.e. d(x) = 0), then the pivot relation is removed. This reducesthe renumbering overhead for the remaining query.� If both x and y are pivot nodes, then node x is associated with a numberof pivot relations P (x); P (x1); : : : ; P (xm) and node y is associated with anumber of pivot relations P (y); P (y1); : : : ; P (yn).Let p and q denote the pivot attributes of P (x) and P (y), respectively.Then we have to �nd all the possible pairs (p; q) that satisfy the con-straint expressed by the relation R(x; y). In other words by joining thepivot relation with the relation R(x; y) we �nd all possible combinations.By marking the join result each combination is assigned a unique pivot at-tribute p0. This result is subsequently used to renumber the pivot relationsassociated with node x and y.T := �(P (x) 1 R(x; y) 1 P (y))P (x) := �[p0;x]T 1T:p=p P (x)P (x1) := �[p0;x1]T 1T:p=p P (x1)...P (xm) := �[p0;xm]T 1T:p=p P (xm)P (y) := �[p0;y]T 1T:q=q P (y)P (y1) := �[p0;y1]T 1T:q=q P (y1)...P (yn) := �[p0;yn]T 1T:q=q P (yn)The reduction is illustrated in the following �gure:
x y

R(x,y)

P(x)

p’

P(y)
R(x,y)

p1 q1 y1

y2

x1

x1

x2

y1

y2

y2

x1

x2 q2p2

x y

P(x) P(y)

p’1

p’2

p’3

p’1

p’2

p’3

x1

x1

x2

y2

y1

y2

PGPGp q PG

10.7 A sample task executionIn this section we illustrate the task execution algorithm using the Mail queryexample. In Chapter 7 this query has been used to clarify the task generationalgorithm. This algorithm produce tasks hG;Fi, that uniquely identify a sub-query by a query graph G and a set of edge-fragment assignments. These tasksare allocated to the processors available, taking into account the processor load

128 CHAPTER 10. TASK EVALUATIONrelation attribute 1 attribute 2 relationshipcity y [Address] x [String] 1-1sender L [Letter] C [Person] n-1receiver L [Letter] P [Person] n-1kids P [Person] C [Person] 1-naddress P [Person] y [Address] 1-1Table 10.1: The fragment types used in the Mail queryand fragment distribution (See Chapter 9). The task execution algorithm de-scribed in this Chapter, �nally, processes each task and reports the result to theQuery Scheduler.The �rst step in task execution is the initialization phase. In this phase thefragments referenced in the task assignment are located. If the BAT for thefragment is already available in the local bu�er pool, the corresponding relationedge can be immediately bound. Furthermore, the bu�er manager is requestedto �x the BAT in memory, so that it is not removed during task execution.If the BAT is not available, the Bat Bu�er Manager retrieves it from thebu�er of another processor. Task execution can proceed even though not all therelation edges are bound, because the graph reduction algorithm selects onlytarget edges that can be reduced successfully. During task processing the BATsrequested arrive and are bound to the graph, so that the query graph can becompletely reduced.The Mail query is represented in a cyclic query graph of �ve relation edges anda single condition edge. The relations associated with the edges are presentedin Table 10.1, which maintains the name, attribute names, attribute types, andrelationship.1. The graph reduction algorithm is cost driven. This means that the costfor removing the target edge should be minimal. In this example the �rsttarget edge is likely to be the condition edge, because the City relationhas the smallest cardinality and the selection operation is cheap comparedto the other operations.P (x) = �[p;x]��x=0Paris0City CP

L

y

"Paris"

x == "Paris"

kidsaddresscity

senderreceiver

x2. The next target edge is the relation edge Sender. The pivot relations forattributes C and L are created by simply numbering the tuples in thesender relation. The attribute node L and C form a pivot-graph.

10.7. A SAMPLE TASK EXECUTION 129T = �SenderP (C) = �[p;C]TP (L) = �[p;L]T CP

L
P(x)

kidsaddresscity

senderreceiver

x y3. Removal of the city edge implies an equi-join of the pivot relation asso-ciated with node x and the city relation. After the join operation theresult must be renumbered, so that each solution is identi�ed by a uniquepivot attribute. The node x represents an internal node and is not usedin the �nal query result. After the graph reduction x and its associatedpivot relation P (x) can be removed, because the node is not connected tothe remaining query graph.P (y) = �[p;y]�(P (x) 1 City)
C

L

P

P(C)

kidsaddresscity

receiver

x y

P(x)

P(L)4. In this reduction step the pivot-graph consisting of node C and L is com-bined with the single node P by removing the relation edge kids. Thepivot relation P (P) is constructed by joining the kids relation with thepivot relation P (C). The pivot relations P (L) is renumbered by joiningit with the relation T on the old pivot attribute. After this reduction thenodes P , C and L are merged in a single pivot-graph.T = �(P (C) 1 Kids)P (P) = �[p0;P]TP (C) = �[p0;C]TP (L) = �[p0;L](T 1 P (L)) L

CP

P(y)

kidsaddress

receiver

y

P(L)

P(C)

5. It is possible that not all the edges in a pivot-graph are removed. This isillustrated in this reduction step by removing the relation edge receiverbetween nodes P and L. According to the algorithm this reduction issolved by joining the pivot relations P (P), P (L) and receiver. The joinresult is renumbered and is then used to renumber the pivot relations inthe sub-graph.

130 CHAPTER 10. TASK EVALUATIONT = �(P (P) 1 Receiver 1 P (L))P (P) = �[p0;P](T 1 P (P))P (C) = �[p0;C](T 1 P (C))P (L) = �[p0;L](T 1 P (L)) receiver

L

CP
address

y

P(L)

P(C)P(y) P(P)6. Finally the two pivot-graphs identi�ed by node y and nodes fP;L;Cg arecombined by removing the relation edge address. After the reduction theinternal node y is removed from the pivot-graph.T = �(P (P) 1 Address 1 P (y))P (P) = �[p0;P](T 1 P (P))P (C) = �[p0;C](T 1 P (C))P (L) = �[p0;L](T 1 P (L)) P C

2

address
y

P(C)P(y) P(P)

L

P(L)
1 2 27. The �nal result is represented by the pivot-graph identi�ed by nodesfP;L;Cg. The associated pivot relations form the DSM representationof the query result.

LP C

P(P) P(C)
3

P(L)
3 310.8 Target edge selectionThe goal of the dynamic query optimization algorithm is to minimize the totaltask execution time. As the selection and removal of the target edge involves joinprocessing on the associated binary relation fragments, the choice of the targetedge is critical to the task execution time. In the Wong-Yousse� algorithm, thischoice is based on classi�cation of relations in a small and not-small.In Goblin the edge that incurs the least processing is selected for removal. Foreach edge this CPU cost is estimated at task initialization and it is updated atrun-time using the pro�les of the pivot relations produced. This cost consistsof two components: the cost to calculate a new pivot relation and the cost forrenumbering already existing pivot relations from a sub-graph.The �rst component is based on operand size and the result of an operation.The operand size is known at run-time and the result size can be estimated for

10.8. TARGET EDGE SELECTION 131a relational operation using statistics on the size, cardinality and distribution ofthe attribute values of the operands [SAC+79].Once a cardinality estimate is found of the resulting pivot relation, the secondcomponent is easy to determine, because the pivot relations in the new pivotgraph have by de�nition the same cardinality. Furthermore, their cardinality inthe old pivot graph is known.The operations used in the task execution algorithm are selection, theta-join, semi-join and equi-join. The following paragraphs present formulas whichexpress the cardinality of their result in the cardinality and ordinality of theoperand attributes. In these formulas we assume a uniform attribute value dis-tribution to simplify the analysis. The e�ect of skewed data distributions onintermediate result size is studied in [ST89].In the following we use R and S to denote binary relations, the symbols Aand B to represent the attributes, and card(R), ord(A), min(A), and max(A)for the cardinality of relation R, the number of distinct attribute values, and theminimum and maximum value of attribute A, respectively.10.8.1 SelectionThe query graph allows the speci�cation of selection conditions on a single at-tribute of the form A � C, where � 2 f<;=; >g. For the equality predicate, thecardinality of the selection result is estimated by the number of distinct attributevalues and cardinality of the relation.card(�A=CR) = card(R)ord(A)For range selection predicates the formula uses the minimum and maximumattribute values.card(�A>CR) = max(A)�Cmax(A) �min(A) card(R)card(�A<CR) = C �min(A)max(A) �min(A) card(R)10.8.2 Theta-joinAttributes in the query graph that are connected through a condition edge ex-press a theta-join operation. These expressions are of the form A � B, where� 2 f<;=; >g and A and B represent the attributes. If the condition containsthe equality predicate, an equi-join is performed. This case is discussed in thenext section.A reliable estimate of the cardinality of the theta-join result is di�cult tomake. In the worst case, the join result equals the Cartesian product of bothoperands. Of course this is generally a pessimistic estimate and does not providea solid basis for cost driven query optimization.A better approach is to maintain statistics on these join operations. In theGoblin architecture a processor executes many similar tasks. It is therefore

132 CHAPTER 10. TASK EVALUATIONpossible to determine the join selectivity for a theta-join on two speci�c fragmentsand use this join selectivity factor to estimate the cardinality for other fragmentcombinations. For a join of two relations R and S the join selectivity (�RS) isde�ned as:�RS = card(R 1 S)card(R):card(S)Given this join selectivity the following formula gives a cardinality estimatesfor a theta-join on another fragment combination of the same relations:card(R0 1� S0) = �RS :card(R0):card(S0)10.8.3 Equi-joinThe equi-join operation is the most common operation in the task evaluationalgorithm. Its frequent use is a consequence of the object representation model.The join condition is therefore always expressed on a key and non-key attribute,that often represent oid types. Assuming that the relations R and S are joinedon the attributes A and B, where A is a key attribute of relation R, then thecardinality of the result is at most the cardinality of S, because each tuple of Sjoins with at most one tuple of R:card(R 1A=B S) = card(S)In some cases the type constructors of the data model can be used to get aneven more accurate estimate. If the relations R and S store two attributes ofa tuple then they are related by a 1 � 1 relationship. In the Mail query graphthis is exempli�ed by the address and city relation. An address is a tupleobject and has a unique city attribute. Then the cardinality of the join result isdetermined by the cardinality of the smallest relation.card(R 1A=B S) = minfcard(R); card(S)g10.8.4 Semi-joinThe semi-join operation is used in the task evaluation algorithm to reduce apivot relation to a sub-set of pivot attributes. Because the pivot attributes areunique, the cardinality of the result simply equals the cardinality of the smallestrelation. Thus:card(R>< S) = minfcard(R); card(S)gGiven these formulas to estimate the result size of an operation, the costformulas for the operations and the actions performed for each graph reduction,it is possible to associate a cost estimate to each edge in the query graph. Ateach iteration of the graph reduction algorithm the edge with the minimal costis selected as target edge.

10.9. OPTIMIZATION ISSUES 13310.9 Optimization issuesThe presented graph reduction algorithm solves general queries represented byquery graphs, but leaves still a lot of optimization issues open. In this sectionwe will brie
y introduce two optimization techniques that can further improvethe task evaluation performance.One technique exploits semantic constraints introduced by the data modeland has already been mentioned shortly in the presentation of the example. Ifa target relation edge connected to a single node is removed and it is knownfrom the data model that it expresses a 1 � 1 relationship then the producedpivot relation will have a unique pivot attribute. Consequently, the other pivotrelations do not have to be renumbered.The other technique aims at reusing intermediate results. Basically, in thistechnique the pivot relations associated with a pivot-graph are maintained. Thee�ectiveness of this technique strongly depends on the task allocation algorithm.It is only applicable if the task allocation algorithm assigns a task that refers tomany fragments used in a task previously executed. In that case this task canshare and reuse intermediate results.To make this work, a naming scheme for intermediate results is required toidentify at task initialization time, which results are available in the processor'sbu�er. From the description of the algorithm we know that sub-query resultsare uniquely identi�ed by their pivot-graphs and the fragments associated withthe edges. In the initialization phase, these sub-graphs and associated pivotrelations replace their corresponding nodes in the query graph.Reusing intermediate results has potentially a great e�ect on the average taskexecution time. For instance, given a query on �ve di�erent relations and aprocessor pool consisting of �ve processors, it is possible to reduce the totalamount of work by assigning these tasks as follows:Site Task sequenceP1 T (P1; Q1; R1; S1; T1);T (P2; Q1; R1; S1; T1);T (P3; Q1; R1; S1; T1); : : :P2 T (P1; Q2; R1; S1; T1);T (P1; Q3; R1; S1; T1);T (P1; Q4; R1; S1; T1); : : :P3 T (P1; Q1; R2; S1; T1);T (P1; Q1; R3; S1; T1);T (P1; Q1; R4; S1; T1); : : :P4 T (P1; Q1; R1; S2; T1);T (P1; Q1; R1; S3; T1);T (P1; Q1; R1; S4; T1); : : :P5 T (P1; Q1; R1; S1; T2);T (P1; Q1; R1; S1; T3);T (P1; Q1; R1; S1; T4); : : :If the task reduction algorithm stores the appropriate intermediate results thistask assignment has the e�ect that after the �rst task has been executed eachprocessor can calculate the next task result by combining the stored intermediateresult with the new fragment.10.10 ConclusionQuery execution in Goblin is based on the dynamic query processing proposedin this thesis. This chapter discussed the task execution algorithm employed inthe prototype. The dynamic features encompass adaptivity towards fragmentsize and the size of intermediate results, and adaptivity towards skew in thefragment arrival rate.

134 CHAPTER 10. TASK EVALUATIONThe �rst feature is the result of a dynamic query optimization scheme, whichdetermines the join execution order at run-time, based on up-to-date relationfragment pro�les. As tasks are evaluated in main-memory, tasks are optimizedtowards CPU cost. The task evaluation algorithm is like the Wong-Yousse�algorithm based on graph reduction. It includes, however, three new aspects.First, it can incorporate a mechanism for multi-task optimization by reusingintermediate results. In the proposed dynamic query processing scheme, wherea large number of similar tasks are executed by a query processor, this has alarge potential.Second, the execution order of the individual join operations can be decidedat run-time. The query optimization is not based on heuristics, but based onthe actual fragment pro�les.Thirdly, the algorithm allows overlapping of fragment I/O with the graphreduction process. This is useful, because the time required to retrieve a fragmentfrom a remote processor is of the same order of magnitude as a single equi-joinoperation. Thus a task execution can proceed even though not all the fragmentsare available.These features lead to an e�cient, adaptive query processing mechanism,which is robust and adaptive to changes in the load distribution and data skew.Furthermore, this approach has reduced the generally di�cult optimizationproblem in parallel database system into two controllable and distinct smallerproblems: a local (CPU) optimization problem at each of the Query Processorsand a task allocation problem (IO) at the Query Scheduler.Many aspects have not been fully addressed in this chapter and will be in-vestigated in our future research. The graph reduction algorithm leaves roomfor further optimization. Especially exploitation of the relationship between thedata model and the graph reduction algorithm shows promise. If it is knownthat two relations form a sub-set of each other, a semi-join operation can beavoided. Furthermore, in many cases it is not necessary to renumber the pivotrelations in a sub-graph, thereby saving many join operations.With respect to the reuse of intermediate results not all has been said. Specif-ically, the heuristics to decide what intermediate results must be maintainedhave to be developed. Furthermore, an analysis of its e�ectiveness is requiredto get insight into the tradeo� between the use of memory resources for storingintermediate results and the cost of their reconstruction.

Chapter 11Goblin evaluation
11.1 IntroductionIn the previous chapters many design decisions have been made and techniqueshave been explored for implementing an OODBMS. The Goblin prototype in-corporates many of these techniques. In particular, the current version exploitspartitioning information through a two-level query-processing scheme. The �rstlevel generates tasks by running the query on a summary data base. The secondlevel evaluates these tasks for the particular fragment combinations in main-memory.The system is designed to run both shared-memory and shared-nothing ar-chitectures. Currently, there are two target platforms: one is collection ofSGI/Indigo workstations (34364.3 Dhrystones/sec) running UNIX and the otheris a multi-processor system consisting of 8 Intel 80386 (7142.9 Dhrystones/sec)running the distributed operating system Amoeba [MvRT+90]. On both plat-forms the processors communicate through an Ethernet connection. A genericthread package and interprocess-communication package is de�ned to facilitateporting the architecture to other platforms.The current implementation is not yet fully operational on the parallel plat-forms. However, all key algorithms have been implemented and can be run inisolation. Thus, even though the system is only partially implemented, we canobtain a fairly accurate performance prediction.In this chapter we illustrate the performance of the key algorithms and com-ponents of the Goblin system. In the next section the relational operationsprovided by the Goblin kernel and the communication sub-system are timed. Inthe third section the e�ect of the two-level query-processing scheme is examined135

136 CHAPTER 11. GOBLIN EVALUATIONfor a simple query. In the fourth section we provide a performance prediction forthe parallel system for the Wisconsin benchmark. We conclude with a summaryof our �ndings.11.2 The Goblin kernelGoblin is designed as a main-memory parallel data-base system. This has amajor in
uence on its design. In a main-memory parallel system the overall per-formance strongly depends on e�cient processing and data communication. Thisfunctionality is provided by a small kernel, which incorporates a communicationmodule and a processing module.These modules will be discussed in further detail in the following sections.11.2.1 CommunicationIn the Goblin system Query Schedulers and Query Processors are processes.These processes are created at system startup time and communicate with eachother using message passing primitives provided by the communication module.The Query Processors use the communication primitives to retrieve data frag-ments and report task results to the Query Scheduler. The data fragment mes-sages are important for the overall query performance, because a task can onlybe completed until all the fragments it requires are locally available. Throughclever bu�er management and task allocation the average number of fragmentrequests can be reduced (See Chapter 9). However, due to a limited amountof bu�er memory fragment I/O can not be completely avoided. An e�cientimplementation is therefore necessary. For query processing two factors are im-portant: the response time, i.e., the time measured from the fragment requestuntil its arrival, and the maximum throughput of the network i.e. the maximumnumber of fragments that can be sent between process pairs.The Query Scheduler uses the communication primitives to control the taskexecution. It assigns from its task table a number of tasks to the query processorwith a lower than average load. The load information on Query Processors is anexample of the information feedback from the Query Processors to the QueryScheduler. For system performance a low response time for task assignment andfor feedback information is essential. For instance, out-of-date load informationon the Query Processors reduces the load balancing algorithm's e�ciency.We have determined the response time for data transfer on both platforms.In the experiment a client process sends a data request to a server process onanother site which then returns the data.The results for the SGI network are disappointing due to the network load andprocess scheduling delays. Its fast processor ensures that the measured system-and user-time for a data transfer of 100,000 bytes does not exceed 100 msec.The network and scheduling delay, however, is in the order of a few seconds.The Amoeba operating system is designed to support distributed applications,which is visible in the results presented in Table 11.1. It shows the responsetime for a small message (500 bytes) and a large message (30,000 bytes). The�rst size corresponds to a typical control message and puts the communication

11.2. THE GOBLIN KERNEL 137type size response timecontrol 500 byte 4 msecdata 30,000 byte 98 msecTable 11.1: The communication response time on the Amoeba platformoverhead in a perspective. The large message represents a typical fragmentretrieval operation.Both the response time for control messages and data messages are reason-able compared to the processing time of the relational operations. A propertask allocation and bu�er replacement scheme can reduce the average numberof fragment requests for a three way join task to 0.5 {1.0 fragment requests(Chapter 9). Under these conditions the task spends only 50 { 100 msec oncommunication and 800 { 1000 msec on processing (Amoeba platform).11.2.2 ProcessingThe task evaluation algorithm of the Query Processor determines at run timethe execution order for the operations speci�ed by the query graph associatedwith the task. At each reduction step of the algorithm the query processorexecutes a relational operation. These operations are uninterrupted by I/O andother operations. The total task execution time equals the sum of the responsetimes of the individual operations including the overhead of the task evaluationalgorithm. The performance of these relational operations is therefore importantfor the task execution time.The basic operations called by the graph reduction algorithm are select, joinand semi-join. These operations take binary relations as operands and returnthe result as a binary relation. Apart from these operations, the processingmodule contains operations for partitioning binary relations. Either on one orboth attributes using a range-based or hash-based partitioning scheme. In thefollowing we present the results of performance measurements of these basicoperations on the SGI and Amoeba platform.11.2.3 The join and semi-join operationBoth the join and semi-join operation use a hash-based algorithm. First a hashindex is created on the join attribute of one operand relation. Entries havingthe same hash value are administrated in a collision list. The hash table sizeis chosen as a power of two, such that the average collision list-length does notexceed four entries. Each tuple of the other relation is then used to probe thishash index. As long as the hash function uniformly distributes the tuples of the�rst relation over the hash domain and the cardinality of the result size is lessthan cardinality of the largest relation, the response time is linear in the operandcardinality and given by:t = thjR1j+ tpjR2j+ tcjSj

138 CHAPTER 11. GOBLIN EVALUATIONwhere th, tp and tc represent the time to create a hash entry, the time to probethe hash table and the time to construct a result tuple respectively.The factors th and tp are dominated by the function calls required to cal-culate the hash value or to compare two values. Assuming that this cost isapproximately given by tf , we can express the previous cost formula as follows:t = tf jR1j+ (tf + ktf)jR2j+ tcjSjwhere k is the average collision list length.From this simple analysis we conclude that in main-memory data bases hashtables must be constructed on the largest relation. Furthermore, we expect theresponse time to show a saw-tooth characteristic as a function of the cardinalityof the second operand R2. This is because the hash table size assumes only valuesthat are a power of two. The average collision list length will then increase untilit reaches four.These e�ects are illustrated by the measurements shown in Figures 11.1 and11.2 for the join and semi-join operation on the SGI platform and in Figures11.3 and 11.4 for the Amoeba platform. Each graph shows three situations: (1)both operands have the same cardinality jR1j = jR2j, (2) the cardinality of thehash table operands is 10% of the other operand jR1j = 0:1jR2j, and (3) thecardinality of the probe relation is only 10% of the hash relation 0:1jR1j = jR2j.The Figures show the predicted saw-tooth shaped curves resulting from thehash table size. For the join operation on equal sized relations discontinuitiesoccur for relations having cardinalities 8000, 16,000, 32,000 and 64,000. Eachpoint in the graph is represented by the average and standard deviation frommany measurements.The potential for dynamic query optimization is illustrated by the di�erencebetween the two execution orders. The curves show that by constructing ahash table on the largest relation, the performance can be improved by a factorof three. This optimization is implemented in the Amoeba version of the joinalgorithms. Furthermore, the collision list anomaly is also solved for this versionas illustrated in Figures 11.3 and 11.4. In this implementation the hash tablesize is a linear function of the operand size.The absolute join performance in main-memory is impressive. On a singleprocessor 33 Mhz SGI/RS3000 a 100k�10k join is performed within 520ms, anda 100k� 100k join in approximately 4:5 seconds. The result sizes for these joinsare 10k and 100k, respectively. The performance characteristic for the semi-joinoperation is comparable to the join performance, but consistently lower becausein constrast to the join operation it does not have to test all possible tuplecombinations of its two operands.11.2.4 The select operationThe basic select operation scans the tuples of its operand and evaluates a rangecondition on it. An alternative implementation uses an index on the selectionattribute of the operand if it exists, thereby considerably reducing the processingtime.In the following we have only considered the execution time for a scan-basedimplementation of the select operation. For this operation the execution time is

11.2. THE GOBLIN KERNEL 139

0

500

1000

1500

2000

2500

3000

3500

4000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

t
o
t
a
l

t
i
m
e

[
m
s
e
c
]

cardinality [tuples]

|R1|=c,|R2|= c/10
|R1|=|R2|=c

|R1|=c/10,|R2|= c

Figure 11.1: Join execution time on SGI as a function of the operand cardinality

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

t
o
t
a
l

t
i
m
e

[
m
s
e
c
]

cardinality [tuples]

|R1|=c,|R2|= c/10
|R1|=|R2|=c

|R1|=c/10,|R2|= c

Figure 11.2: Semi-Join execution time on SGI as a function of the operandcardinality

140 CHAPTER 11. GOBLIN EVALUATION

0

2000

4000

6000

8000

10000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

t
o
t
a
l

t
i
m
e

[
m
s
e
c
]

cardinality [tuples]

|R1|=|R2|=c
|R1|=c,|R2|= 0.1c

Figure 11.3: Join execution time on Amoeba as a function of the operand car-dinality

0

2000

4000

6000

8000

10000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

t
o
t
a
l

t
i
m
e

[
m
s
e
c
]

cardinality [tuples]

|R1|=c,|R2|=0.1c
|R1|=|R2|=c

Figure 11.4: Semi-Join execution time on Amoeba as a function of the operandcardinality

11.3. QUERY PROCESSING 141simply a linear function of the cardinality of the input relation and the cardinalityof the output relation:t = tf jR1j+ tc�jR1jwhere tf , tc an � represent the time to respectively evaluate the comparisonfunction for an input tuple, the time to produce a result tuple and the selectivityof the operation. Figures 11.5 and 11.6 show the execution time for the SGI andAmoeba implementation as a function of the input cardinality and selectivity asa percentage.The 3-D graph shows that the time to construct a result tuple tc is the dom-inant cost factor. For a selectivity of 0% the selection cost increases slowly toa maximum of 10 ms in the cardinality range of 1k - 100k tuples. At a 100%selectivity, the operation on a 100 Kbyte relation takes 600 ms.11.2.5 The partition operationFinally we look at the execution cost for the partition operation. As this oper-ation distributes its input relation tuples over a number of output relations anddoes not reduce the number of tuples, the response time is a linear function ofthe input cardinality of the form:t = tpjR1j+ tswhere tp represents the partition overhead per tuple and ts the constant start-upcost.The measurements con�rm that the execution cost is a linear function ofthe cardinality. Furthermore, the initialization overhead is negligible. For theSGI version we �nd that tp = 53.9 msec/1000 tuples. This �gure is quite highcompared to the cost of a join and select operation and indicates that partitioningis best performed a priori.11.3 Query processingThe two level query processing scheme consists of task generation and task ex-ecution. In Goblin the binary relations are a priori partitioned and distributedover the processors. With each binary relation a summary relation is associatedwhich maintains for each fragment its partition information consisting of thefragment identi�er and the hash values for the attributes.The task generation algorithm executes the query on the summary relationsto determine which fragment combinations contribute to the �nal query result.The tasks produced are stored in a task table and subsequently selected by thetask allocation algorithm for execution on the Query Processors.The partitioning degree and the fragment cardinality in
uence the query ex-ecution time. For a high partitioning degree the cardinality of the summaryrelations is high and the task generation overhead is high compared to the taskexecution time. If the relations are partitioned into a few large fragments, thetask generation algorithm produces only a few tasks having a high executiontime.

142 CHAPTER 11. GOBLIN EVALUATION

10 20 30 40 50 60 70 80 90 100 0

50

100

100
200
300
400
500
600
700
800
900

cardinality [1000 tuples]

selectivity [%]

response time [msec]

Figure 11.5: The select execution time on the SGI platform as a function of theinput cardinality
10 20 30 40 50 60 70 80 90 100 0

50

100

500

1000

1500

2000

2500

cardinality [1000 tuples]

selectivity [%]

response time [msec]

Figure 11.6: The select execution time on the Amoeba platform as a function ofthe input cardinality

11.3. QUERY PROCESSING 143In this section we show the in
uence of the partitioning degree on the totalexecution time and the minimal response time. The minimal response time isde�ned as the response time obtained if all the tasks were executed in parallel.For this purpose we consider the query represented by the following querygraph:
CPP path

672699820741487742012981829748893982 728822754254953348672699820741487742 849838543942783415728822754254953348
x y zn1 n2 n3 n4

For this query graph we will �rst discuss the task generation in detail and thenshow the operations performed in the task evaluation process. Finally we showthe overall performance by combining the task generation and task evaluationcost.For the experiment the relations x; y and z represent binary relations withtwo integer attributes. The attributes are unique and randomly selected fromthe integer domain [1; c], where c equals the cardinality of the relation. Beforethe query is executed the binary relations are partitioned into variable numberof partitions. In the experiment the number of partitions ranges from 1 to 100.11.3.1 Task generationThe nodes in the graph n1; n2; n3 and n4 correspond to object sets. The rela-tionships between these objects are maintained in the binary relations x; y andz. The task generation algorithm determines a CPP path in the query graphand uses it to generate fragment combinations that possibly contribute to thequery result. Because the query graph is a linear chain a possible CPP pathis given by hx; y; zi. Because all the summary relations have the same size thestart node can be either x or z.This edge sequence identi�es a program which when run on the summaryrelations returns the fragment combinations contributing to the query result.In the following program (See Table 11.2) the join operation on two binaryrelations P [a; b] and Q[c; d] is de�ned as: join(P,Q) � �[a;d](P 1b=c Q). Themark operation applied to a binary relation R[a; b] returns a relation S[p; a],where attribute p is a unique pivot attribute.The remark is similar to the mark operation. It invents for each tuple ofits operand relation a new pivot attribute, but does this for both attributesat the same time. Applied to a relation R[a; b] the remark operation returnsthe relations S[p; a] and T [p; b] . This operation supports the renumbering ofconstructed pivot relations as described in Chapter 7.

144 CHAPTER 11. GOBLIN EVALUATIONp1-x = mark(x)x-y = join(x,y)p1-y = join(p1-x,y)p2-p1, p2-y= remark(p1-y)p2-x = join(p2-p1,p1-x)y-z = join(y,z)p2-z = join(p2-y,y-z)p3-p2, p3-z = remark(p2-z)p3-x = join(p3-p2,p2-x)p3-y = join(p3-p2,p2-y)Table 11.2: The summary query program for the example queryThe solution to the summary query is represented in DSM format by thepivot relations p3-x,p3-y and p3-z. Each fragment combination is identi�ed bya unique pivot value. The set of tasks can therefore be constructed by joiningthese three relations on their pivot attribute.The binary relations are hash partitioned on both attributes. Thus if the hashfunction on the �rst attribute assumes n di�erent values and the hash function onthe second attribute assumes m values, the combination of them partitions therelation in m� n fragments. For simplicity we choose m = n in the experimentleading to the quadratic partitioning degrees p 2 f1; 4; 9; 16; 25; 36; 49; 64; 81; 100g.With this partitioning the join attribute in each relation assumes pp di�erentvalues. If two summary relations of size p are joined each tuple in one operandrelation will match pp tuples in the other relations. The join result has thereforea cardinality of ppp. With the next join operation the result size grows againby a factor of pp. Consequently, the summary query cost grows as a power ofthe square root of the partitioning degree O(ppn), where n is the number ofrelations in the query graph.Figures 11.8 and 11.7 show respectively the response time and the numberof generated tasks as a function of the partitioning degree. Fortunately, eventhough the total number of tasks grows enormously, the absolute cost for sum-mary query processing is acceptable for small partitioning degrees. Furthermore,in the �gures the measurements coincide with the results from the model for thenumber of generated tasks and the summary query time, which are f(p) = pp4and respectively f(p) = 3:5pp4 .In any case, the summary query cost must be balanced with the task evaluationcost. Consequently, the partitioning degree should depend on the cardinality ofthe binary relation. In the following section we consider the relation betweentask evaluation cost and partitioning degree.11.3.2 Task evaluationThe task evaluation algorithm is based on reduction of the query graph. Thealgorithm selects at run time target node and edge combinations and propagates

11.3. QUERY PROCESSING 145

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

t
o
t
a
l

n
u
m
b
e
r

o
f

g
e
n
e
r
a
t
e
d

t
a
s
k
s

number of partitions

experiment
model

Figure 11.7: The number of generated tasks as a function of the partitioningdegree

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

s
u
m
m
a
r
y

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

[
m
s
e
c
]

number of partitions

experiment
model

Figure 11.8: The summary query response as a function of the partitioningdegree

146 CHAPTER 11. GOBLIN EVALUATION

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

q
u
e
r
y

t
i
m
e

[
m
s
e
c
]

number of partitionsFigure 11.9: The average task execution time as a function of the partitioningdegree.the implied constraints to the connected edges until the graph is reduced to asingle edge. This edge and its associated binary relation is then used to constructthe pivot sets for the distinguished nodes1.Currently there exists only a Prolog implementation of the graph reduction al-gorithm. This program generates for a given query graph and set of distinguishednodes a task evaluation program. For the moment the dynamic optimization isand reuse of intermediate results is not included.For task evaluation we consider the query on the relations x, y and z intro-duced in the previous example. Assuming that the distinguished nodes are n1; n2and n3. Then for this example a (possible) task evaluation algorithm is givenby: t1 = join(x,y)t2 = join(t1,z)n1 = mark(t2)n2 = join(a1,t2)n3 = join(a1,t1)We expect the average task execution time to be inversely proportional tothe partitioning degree. There are two reasons for this. First, because thejoin execution time is linear in its operand size and result size (See Section11.2.3) and the partitioning degree is inversely proportional to the operand size.Secondly, because the cardinality of the total query result is independent from1i.e. nodes associated with projection attributes

11.3. QUERY PROCESSING 147

3500

4000

4500

5000

5500

6000

6500

0 20 40 60 80 100

p
a
r
t
i
t
i
o
n

t
i
m
e

[
m
s
e
c
]

number of partitionsFigure 11.10: The partitioning time on the as a function of the partitioningdegreethe partioning degree, the cardinality of the task result is inversely proportionalto the number of tasks as presented in Figure 11.7 and therefore only adding tothis e�ect.In the experiment the average task evaluation time is determined as a functionof the partitioning degree. The source relations contain 100,000 tuples each.Given a partitioning degree ranging from 1 to 100 the fragment cardinality rangesfrom 100; 000 to 1; 000 tuples. The results are shown in Figure 11.9. The averagetask execution time decreases fast as the partitioning degree increases. Alreadyat a partitioning degree of 9 the task execution cost is an order of magnitudeless than the original cost.11.3.3 Partitioning overheadFor completeness we have also measured the time required for partitioning thethree relations. In the experiment the relations are locally available and theresulting fragments are also stored locally. The summary relations are producedas a by-product of the partitioning operation.The result is presented in Figure 11.10. The partitioning cost is surprisingly alinear function of the number of partitions. This could indicate a
aw in Goblin'smemory allocation and requires our future attention.A more important observation is that the partitioning cost is considerablecompared to the task execution cost and summary query cost. Furthermore,the cost is high even for low partitioning degrees. For instance, it takes almost6 seconds to partition the three relations into 100 fragments. Therefore, it isbetter to partition relations a priori.

148 CHAPTER 11. GOBLIN EVALUATION

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100

t
i
m
e

number of partitions

partition
partition+summary

reponse time

Figure 11.11: The minimumquery response time as a function of the partitioningdegree11.3.4 Combining the resultsIn the previous subsections we presented the basic cost factors for running theexample query in an operational system. By combining the partitioning cost,the summary query cost, the number of produced tasks and the average taskexecution time with the basic communication cost we can estimate the minimumresponse time (Figure 11.11) and total time (Figure 11.12) as a function of thepartitioning degree.The minimum response time is de�ned as the time obtained when all the tasksare executed in parallel. It is de�ned by the following formula:tmin = tpartition + tsummary + ttask + 3tcommThe partition time tpartition o�sets the response time with a relatively constant5 seconds. The task execution time ttaskis high between a partition degree of 1and 9 but negligible for higher partitioning degrees; in the order of 25 msec. Thesummary query cost dominates the response time for partitioning degree higherthan 9. The last factor is the communication cost for retrieving three fragments.The communication cost can be reduced to a single fragment retrieval by cachingthe fragments.This minimum response time represents of course only a lower bound. Thetime required for distributing the tasks over the available processors and thefragments over the processors is not included. Although it is possible to dis-tribute the tasks over the available processors in a single broadcast message andto distribute the fragments over the available processors in a maximum of 3:pbroadcast messages, where p is the partitioning degree, it must be said that thisscheme is not employed in the Goblin architecture.The total time estimate sums the partitioning time, summary query executiontime and total task execution time. It corresponds to the situation where the

11.4. THE WISCONSIN BENCHMARK 149

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 10 20 30 40 50 60 70 80 90 100

t
o
t
a
l

t
i
m
e

[
m
s
e
c
]

number of partitionsFigure 11.12: The total query processing time as a function of the partitioningdegreequery is evaluated on a single processor. The following formula is used to obtainthis measure:ttotal = tpartition + tsummary + ntasksttaskThe results are shown in Figures 11.11 and 11.12. It shows that the optimalpartitioning degree for the minimum response time for this example is reachedfor a low partitioning degree p = 9. For larger partitioning degrees the processingtime for the summary query increases fast. Therefore, for obtaining better resultsfor parallel query processing the summary query cost must be reduced. (Forinstance by executing the summary query in parallel.)Note, however that the minimum response time without partitioning for thisthree way join query on 100,000 binary relations is a low as 580 ms and the totaltime is in that case 30:8 seconds.11.4 The Wisconsin benchmarkThe Wisconsin benchmark [DeW91] is a well known benchmark used to com-pare the performance of relational systems. To get a rough idea of the relativeperformance compared to other data-base systems, most new systems have runthe joinABprime query of the benchmark.The benchmark uses three synthesized relations A,B and C consisting of thirteeninteger attributes and three 52-byte string attributes. The length of each tupleis therefore 208 bytes, assuming no storage overhead. In the original benchmarkthe cardinality of the relations is �xed. The small relation C contained 1,000tuples and the two larger relations A and B 10,000 tuples.The size of these benchmark relations (2 Mbyte and 200 Kbyte respectively)is relatively small compared to the physical address space of todays computers.

150 CHAPTER 11. GOBLIN EVALUATIONFor this reason the benchmark relation cardinality is scaled up to compare theperformance of data-base machines. The performance of these systems has beenmeasured on relations containing 100,000 and 10,000 tuples (and more [DeW91]).Because the resulting relation size is at least 20 MByte it is unrealistic even formain-memory data-base machines to execute the Wisconsin queries in main-memory without partitioning the relations.The two integer attributes unique1 and unique2 are uniformly distributedunique random values in the range [0;max� 1], where max is the cardinality ofthe benchmark relation. In the joinABprime benchmark the relation A is joinedwith the relation Bprime on the attributes unique1 and unique2. The Bprimerelation is constructed by selecting 10% of the B relation. Because both joinattributes are key attributes, the resulting relation contains 10,000 tuples.In the DSM storage model the Wisconsin relation is represented by thirteenbinary relations, one for each attribute. Each relation stores the associationof a tuple identi�er and an attribute value. Finding all the attribute valuesassociated with a speci�c tuple requires joining these relations on the tupleidenti�er. Therefore the relations are hash partitioned on the tuple identi�er toreduce this reconstruction cost.Similar to the previous experiment the query is divided in two steps: taskgeneration and task evaluation. The task generation algorithm traverses a CPPpath through the query graph and runs the query on the summary relations.This implies a join expression over the 26 summary relations. This seems to bea prohibitive amount of work. Fortunately the summary relations are very smalland the partitioning on the tuple identity leads to a small summary query resultas well.For instance, assume that both relations are partitioned in p fragments. Thenall the fragment combinations of relation A unique1 and B unique2 potentiallycontribute to the query result. Furthermore, as each A unique1 and B unique2fragment uniquely identify fragments for the remaining A and B attributes, re-spectively, a total of p2 tasks is expected.The result of this experiment is shown in Figure 11.13. Although the summaryquery is executed on a total of 26 relations, the partitioning on the tuple identi�erleads only to a quadratic increase of the query execution time as a function ofthe partitioning degree.The task execution time is measured separately. For a partitioning degreeranging from [1; 100] the cardinality of the A fragment ranges from 100; 000 to1; 000. The result of this experiment is shown in Figure 11.14.If we combine the previous results to determine the minimal query executiontime for this query we see that for a partitioning degree of 6 the query responsetime is 4000 ms (Figure 11.15). This graph includes estimated communicationcost.In Table 11.3 we compare the estimated joinABprime query execution timeto the results obtained by other data-base systems. The absolute performanceis of the same order of magnitude as the other main-memory systems. There isroom for improvement, however.First, we have observed that the summary query cost dominates the queryexecution time. Only 1.6 seconds of the estimated 4 seconds is used for com-

11.4. THE WISCONSIN BENCHMARK 151

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30 35 40 45 50

t
o
t
a
l

t
i
m
e

[
m
s
e
c
]

partition degreeFigure 11.13: The joinABprime summary query execution time as a function ofthe partitioning degree
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 20 40 60 80 100

t
o
t
a
l

t
i
m
e

[
m
s
e
c
]

partition degreeFigure 11.14: The joinABprime task execution time as a function of the parti-tioning degree

152 CHAPTER 11. GOBLIN EVALUATION

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25

m
i
n
i
m
a
l

r
e
s
p
o
n
s
e

t
i
m
e

[
m
s
e
c
]

partition degreeFigure 11.15: The joinABprime minimal response time as a function of thepartitioning degreeSystem #proc response timeSilicon DBM 3 23.900 sec [LR88]PRISMA 10 6.132 sec [Wil93]PRISMA 30 2.034 secDBS3 10 1.8 sec [BCV91]Goblin/SGI 6 4 secTable 11.3: The minimum response time for some parallel main-memory data-base systems for the joinABprime query.puting the joinABprime tasks in parallel. We can amortize the summary querycost over multiple queries by storing its result. Each time the user evaluatesthe joinABprime query, the summary query result can be reused. Furthermore,the implementation of the summary query algorithm can be improved consid-erably. In the current implementation the �nal pivot phase, - where the tasksare produced- , is implemented by joining the pivot relations. Alternatively, thiscan be implemented using cheap lookup operations.With these modi�cations we expect a response of 2.5 seconds.11.5 ConclusionThe timing of the individual operations shows that the relational algebra oper-ations on the binary relations are e�ciently implemented.The important performance factors in Goblin's two-level query-processingscheme are summary query cost, task evaluation cost and communication cost.On the basis of measurements of these factors we determined the minimum re-

11.5. CONCLUSION 153sponse time as a function of the partitioning degree that can be obtained on aparallel platform .It turned out that the minimum response time is dominated by the summaryquery cost. This cost increases exponentially with the partitioning degree andis only reasonable for small partitioning degrees (� 9). The task evaluation costand communication cost are negligible compared to this factor.Nevertheless, compared to other main-memory parallel systems we arrive ata reasonable response time estimate of 4 seconds for the joinABprime query ofthe Wisconsin benchmark, which can be reduced to 2.5 seconds by improvingthe implementation of the summary query algorithm.Furthermore, the communication overhead for task distribution and task con-trol is small compared to the task execution cost, which justi�es a limited amountof parallel execution. The overall resource consumption can be controlled be-cause the Query Scheduler can determine the number of processors used for thetask evaluation.The e�ect of load balancing is not covered by the experiments. This aspect willbe studied in future experiments once the Goblin prototype is fully implemented.

Chapter 12Summary and Future Research
12.1 IntroductionThis thesis presents the design and analysis of a dynamic query processing archi-tecture for the Goblin parallel OODBMS. The primary objective of this researchwas to design a query processing architecture that can e�ectively and e�cientlycope with skewed data distributions and dynamically changing load distribution.The design of an e�cient parallel DBMS is a complex task, because manydesign issues that a�ect the performance depend on each other. For instance, ashared-memory multiprocessor requires a di�erent query processing scheme thana shared-nothing architecture. Furthermore, load balancing is more di�cult toachieve in a shared-nothing architecture.To achieve this ambitious goal we �xated from the onset a few design decisionsbased on technological trends and requirements of the envisioned applicationdomains. Consequently, the baseline for the Goblin design was that it should bea parallel main-memory OODBMS designed for a shared-nothing architecture.Once we made this decision we could concentrate our work on the storage modeland on the query processing architecture.The current design is the result of extensive testing and performance eval-uation based on mathematical models, simulation models and benchmarks onprototype implementations of key algorithms. Although the prototype system isnot yet fully implemented we concluded on the basis of the performance of keyalgorithms that this architecture shows a competitive performance compared toother main-memory parallel DBMS systems.154

12.2. THE MAIN CONTRIBUTIONS 15512.2 The main contributionsThe research addressed many design aspects that have an impact on the perfor-mance of a parallel main-memory OODBMS. In global terms we can summarizethe research contribution of our work in the following two points:� The development, analysis and performance evaluation of a novel two-leveldynamic query processing scheme.� The design, implementation and performance evaluation of a storage modelfor a parallel main-memory OODBMS.The results, their consequences and points for further research are discussedin the remainder of this chapter. Section 12.2.1 discusses the results and conse-quences for the storage model and section 12.2.2 the results and consequencesfor the query processing scheme. We conclude this thesis with an overview ofthe remaining research questions.12.2.1 The Goblin storage architectureThe storage model is an important performance factor for a data base system.It is speci�cally designed to take advantage of the main-memory approach andto provide
exible storage of objects in a parallel system.Object representationWe compared three alternative storage models for object representation for themain features of the Goblin architecture: the object-oriented data model, theparallel architecture and the main-memory design. The data model led to theconsideration of two aspects: representation of object sharing and the e�cientsupport of object evolution. The second feature, the parallel architecture, ledto the requirement that the representation should allow coarse-grain parallelismand an easy declustering scheme. The main-memory assumption, �nally, led tothe requirement that the storage overhead should be low.On the basis of a qualitative comparison of the three storage models we se-lected the decomposed storage model (DSM). This method maps the attributesof an object to binary relations. Consequently, join operations are required toretrieve all object's attributes, which is the main reason why it is seldomly used.It turns out, however, that in a main-memory environment the join overheadis low and will reduce even further with the increase in processor speed. Fur-thermore, DSM has a low storage overhead compared to the normalized storagemodel, allows declustering, and provides e�cient support of object sharing andobject updates. Finally, a data base kernel can be optimized to support onlyoperations on binary relations.Therefore, our main conclusion is that DSM deserves to be reconsidered asthe storage model for parallel main-memory OODBMS.Two-level storageGoblin declusters binary relations into fragments and distributes them over theprocessor pool to exploit parallelism. This means that a query on a binary

156 CHAPTER 12. SUMMARY AND FUTURE RESEARCHrelation is mapped to sub-queries on the fragments. To perform this mappingcorrectly information on the partitioning must be maintained consisting of thepartioning method used and the allocation of fragments.We decided to maintain the fragmentation information for each binary relationin a summary relation, because this approach facilitates the use of fragmentationinformation in the query optimization process. It does not require symbolicevaluation of a query against a fragmentation rule to decide whether a fragmentaccessed by a query. Instead, the query is simply evaluated against the summarydatabase using the a set of relational operations. The e�ect is that the numberof sub-queries to be run on the data base is reduced.The summary database maintains for each fragment of a binary relation itsidenti�cation and, in case of range partitioned relations, the minimum and max-imum values for each attribute involved. As the partitioning degree is limitedby the number of processors in the system is the storage overhead for maintain-ing the summary database low. Furthermore, the summary query processingoverhead can be controlled by varying the partitioning degree.A disadvantage of this scheme is that to obtain correct answers to queriesit is critical that the summary data base is consistent with the data base. Achange in the partitioning information of a fragment must be re
ected in thesummary relation. Fortunately, this overhead is limited and can be avoided forfrequently updated fragments by temporarily extending its partitioning infor-mation to cover the complete relation domain. In that case the fragment willbe accessed by every query. Using this technique the summary relation can beupdated by a process running in the background.Our conclusion is that the summary data base provides a general indexingmechanism which facilitates the use of partitioning information in query opti-mization. The idea is also applicable to a centralized DBMS where it can limitthe number of I/O operations.12.2.2 Dynamic query processing architectureQuery optimization is a di�cult and time consuming process. This is even moreso for a parallel DBMS where both data parallelism and pipeline parallelism isexploited. In some systems the optimization process has been split into a logicaloptimization phase and a parallization phase, which takes the data allocationand load distribution at query start-up time into account. This functional de-composition is based on the assumption that the optimization decisions takenin the two phases are independent. Unfortunately, this assumption does nothold. Furthermore, the e�ectiveness of pipeline parallelism depends on the loaddistribution. A change in the load distribution can introduce bottlenecks in thequery pipeline.To overcome these problems we have designed a dynamic query processing ar-chitecture which can e�ciently take load balancing decisions and perform queryoptimization at run-time. Its primary characteristics are that it exploits dataparallelism only and uses a two-level query processing structure. We decidednot to exploit pipeline parallelism, because it is di�cult to combine with a loadbalancing scheme.

12.2. THE MAIN CONTRIBUTIONS 157In the two-level query processing scheme a query is evaluated �rst on thesummary data base and then on the stored fragments. A consequence of thedeclustering scheme used in the storage architecture is that a query is mappedinto a union query over all possible fragment combinations, or tasks. These tasksare independent, run in parallel, and they are small enough to be executed inmain-memory.The two-level architecture is implemented by two kind of processes: QuerySchedulers (QS) and Query Processors(QP). The QS generates tasks for a givenquery, distributes them dynamically over the processor pool and uses feedbackinformation on the executed tasks to reduce the total amount of work (taskelimination) and to adjust the task allocation for load balancing. The QP executethese tasks in main-memory and return execution information to the QS.The main advantage of this two-level query processing scheme is that theoptimization issues are separated. In the QS the task generation process drivesthe query execution by executing the query on the summary data base. Itstask elimination process performs logical optimization using optimization rulesand feed back information to reduce the number of tasks remaining. The taskallocation process, �nally, is mainly concerned with load balancing and reducingthe I/O by taking into account the strong relation that exists between taskallocation and bu�er management in the QP.The primary concern for the QP is to reduce the average task execution timethrough an e�ective use of memory and CPU resources. To achieve this itstask evaluation algorithm uses a modi�ed version of the INGRESS dynamicquery optimization scheme. It is designed to exploit the similarity of tasks bystoring and re-using intermediate results and to handle strong
uctuations inthe fragment arrival rate.These four processes, task generation, task elimination, task allocation andtask execution have been studied in detail in this thesis. Through mathematicalmodels, simulation and measurements on prototype implementations of thesealgorithms we have uncovered the critical performance parameters of the two-level query processing scheme, namely partitioning degree and the data model.It turns out that the minimum response time is obtained for low partitioningdegrees (� 10). The minimum response time is dominated by the task genera-tion process which has to consider a large number of fragment combinations forexecution. The number of produced tasks, and therefore the query cost, dependson the partitioning degree and underlying data model. If the attributes of twosummary relations have a m�n relationship, the number of tasks increases sig-ni�cantly. For 1� n and 1� 1 relationships the number of tasks can be limitedwith a proper partitioning.It is possible to reduce the summary cost by improving the algorithm and byamortizing the cost of summary query processing over multiple executions bystoring the summary query result. Therefore, we think that the two-level queryprocessing architecture is a viable approach to the complex query optimizationand load balancing task in parallel data base systems.

158 CHAPTER 12. SUMMARY AND FUTURE RESEARCH12.3 Future researchThe design of a parallel OODBMS is a multi-year e�ort. Therefore we havenot addressed all the issues in detail. In the previous chapters we have alreadyencountered directions for further research. We will address them in the followingsections.The �rst direction is the further development of the binary storage architec-ture. In the discussion data placement and data replication have only beendiscussed in global terms. The main research question is how to make the dataplacement and replication adapt to the query workload and available memoryresources. A technique to consider is to decluster binary relations on the basisof their partitioning, such that for query processing only a limited number offragments need to be transported. Another technique worth considering is tomaintain transport statistics for each fragment. If it turns out that a fragmentis frequently copied to a certain processor site, it could be advantageous to movethe fragment permanently to that site.The second direction concerns the query processing architecture. In particular,optimizations for the summary query algorithm must be considered. Possibleapproaches are to choose the data partitioning on the basis of the underlyingdata model. For instance, partition attribute relations of tuple objects on theirtuple oid to reduce the number of generated tasks.The next important issue is to study the e�ect of the task allocation algorithmson the load distribution. In the beginning of the project simulation models havebeen constructed to study this aspect, but the experiments failed due to defectivesimulation software.Finally, in the task evaluation algorithm the e�ectiveness and mechanisms forre-using intermediate results must be studied in detail. The main problem hereis to guess which intermediate results should be maintained to make an e�ectiveuse of bu�er memory. This problem is related to browsing query optimization,but more restricted, because in this case the query remains the same and onlythe accessed fragments changes.

Bibliography[ABD+92] M. Atkinson, F. Bancilhon, D. DeWitt, D. Maier, and S. Zdonik.Building an Object-Oriented Database System: The story of O2,chapter The Object Oriented Data Base System Manifesto, pages3{18. Data Management Systems. Morgan-Kaufman, 1992.[AK92] S. Abiteboul and P. Kannelakis. Building an Object-OrientedDatabase System: The story of O2, chapter Object Identity asa Query Language Primitive, pages 98{127. Data ManagementSystems. Morgan-Kaufman, 1992.[AKO88] P.M.G. Apers, M.L. Kersten, and H.C.M. Oerlemans. PRISMADatabase Machine: A Distributed, Main-Memory Approach. InProceedings of the International Conference on Extending DatabaseTechnology, 1988. Venice, Italy.[AKW+92] P.M.G. Apers, M.L. Kersten, A. N.Wilschut, P.W.P.J Grefen, C.A.van den Berg, and J. Flokstra. PRISMA/DB: A Parallel Main-Memory Relational DBMS. IEEE Journal on Data and KnowledgeEngineering, 4(6):541{554, December 1992.[BCV91] B. Bergsten, M. Couprie, and P. Valduriez. Prototyping DBS3,a shared-memory parallel database system. In Proceedings of theFirst International conference on Parallel and Distributed Infor-mation Systems, pages 226{235, 1991. Miami Beach, Florida.[Bea88] F. Bancilhon and et al. The design and implementation of O2, anobject-oriented database system . In Advances in Object-OrientedDatabase Systems, 1988.[Bea90] H. Boral and et al. Prototyping Bubba, a highly parallel databasesystem. IEEE Journal on Data and Knowledge Engineering,2(1):4{24, 1990.[BG89] L. Becker and R.H. G�uting. Rule-based optimization and queryprocessing in an extensible geometric database system. Forschungs-bericht 312, Fachbereich Informatik Universit�at Dortmund, Post-fach 500500, D-4600 Dortmund, August 1989.159

160 BIBLIOGRAPHY[BK89] E. Bertino and W. Kim. Indexing techniques for queries onnested objects. IEEE Journal on Data and Knowledge Engineer-ing, 1(2):196{214, June 1989.[BR88] P. Bodorik and J.S. Riordon. A threshold mechanism for dis-tributed query processing. In Proc. of the 16-th Annual ACMComputer Science Conference, pages 616{625, 1988. Atlanta, GA.[Bra84] K. Bratbergsengen. Hashing methods and relational operations.In Proceedings of the 10th International Conference on Very LargeData Bases, pages 323{333, August 1984. Singapore.[Car84] L. Cardelli. Semantics of datatypes, volume 173 of Lecture Notesin Computer Science, chapter A semantics of Multiple Inheritance.Springer-Verlag, 1984.[Cat93] R.G.G Cattell, editor. The Object Database Standard: ODMG-93.Morgan Kaufmann, 1993.[CBSB92] C. Chachaty, P. Borla-Salamet, and B. Bergsten. Capturing paral-lel data processing strategies within a compiled language. AppliedInformation Technology, (13), 1992.[CDRS86] M. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita. Ob-ject and File Management in the EXODUS Extensible DatabaseSystem. In Proceedings of the Twelfth International Conference onData Bases, pages 91{100, August 1986. Kyoto.[Dea90] O. Deux and et. al. The Story of O2. IEEE Journal on Data andKnowledge Engineering, 2(1):91{108, March 1990.[DeW91] D.J. DeWitt. chapter The Wisconsin Benchmark: Past, Present,and Future, pages 119{166. Morgan-Kau�man, 1991.[DGS+90] D. J. DeWitt, S. Ghadeharizadeh, D.A. Schneider, A. Bricker,H. Hsiao, and R. Rasmussen. The GAMMA Database MachineProject. IEEE Journal on Data and Knowledge Engineering,2(1):44{51, 1990.[GGdM89] G. Gardarin, I. Guessarian, and C. de Maindreville. Translationof logic programs into funtional �xpoint equations. TheoreticalComputer Science, 63:253{274, 1989.[Gib91] G.A. Gibson. Redundant Disk Arrays: Reliable, Parallel SecondaryStorage. An ACM Distinguished Dissertation. The MIT Press,Cambridge Massachusetts, London England, 1991.[GM84] M. Gondran and M. Minoux. Graphs and Algorithms. InterscienceSeries in Discrete Mathematics. Wiley, 1984.

BIBLIOGRAPHY 161[Gro87] The Tandem Database Group. NonStop SQL: A Distributed High-Performance, High-Availability Implementation of SQL, pages113{137. Number 359 in Lecture Notes in Computer Science.Springer-Verlag, September 28-30 1987. Paci�c Grove, CA.[Gro90] EDS Database Group. Eds - collaborating for a high-performanceparallel relational database. In Proceedings of the ESPRIT confer-ence, November 1990. Brussels, Belgium.[GW89] G. Graefe and K. Ward. Dynamic query evaluation plans. InProceedings of the 1989 SIGMOD conference, pages 358{366, 1989.[HO88] A. Hafez and G. Ozsoyoglu. The partial normalized storage modelof nested relations. In Proceedings of the 14th International Con-ference on Very Large Data Bases, pages 100{111, August 1988.Los Angeles, CA.[HRD93] I. Herman, G.J. Reynolds, and J. Davy. Made: A multimediaapplication development environment. CWI Report CS-9369, CWI,1993.[HS93] A. Heur and M.H. Scholl, editors. Fifth Workshop on Foundationsof Models and Languages: Optimization in Databases. Intitut f�urInformatik, Technische Universit�at Clausthal, september 1993.[HZ87] M. Hornick and Z. Zdonik. A Shared Segmented Memory Systemfor an Object Oriented Database. ACM Transactions on O�ceInformation Systems, 5(1), January 1987.[JR86] M.B. Jones and R.F. Rashid. Mach and matchmaker: kernel andlanguage support for object oriented distributed systems. In Inter-national OOPSLA '86 conference, 1986. Portland, OR.[KAM+87] M.L. Kersten, P.M.G. Apers, Houtsma M.A.W., E.J.A. van Kuyk,and R.L.W. van de Weg. A Distributed, Main-Memory DatabaseMachine. In Proc. of the Fifth International Workshop on DatabaseMachines, pages 353{369, October 1987.[KBG89] W. Kim, E. Bertino, and J. Garza. Composite objects revisited.ACM Sigmod Record, 18(2):337{347, 1989.[KBGW90] W. Kim, N. Ballou, J.F. Garza, and D. Woelk. Architecture of theORION next-generation database system. IEEE Journal on Dataand Knowledge Engineering, 2(1):109{124, March 1990.[Ker91] M.L. Kersten. Goblin, a DBPL designed for Advanced DatabaseApplications. In Proceedings of the 2nd International Conferenceof Database and Expert System Applications, 1991. Berlin.[KNT89] M. Kitsuregawa, M. Nakayama, and M. Tagaki. The e�ect ofbucket size tuning in the dynamic hybrid GRACE hash join

162 BIBLIOGRAPHYmethod. In Proceedings of the �fteenth international conferenceon Very Large Data Bases, pages 257{267, August 1989. Amster-dam, The Netherlands.[KvdB91] M.L. Kersten and C.A. van den Berg. Parallel Processing of aClass of Geographical Queries. In Proceedings of the InternationalWorkshop on Database Management Systems for Geographical Ap-plications, pages 274{287, 1991. Capri, Italy.[KvdBS+93] M.L. Kersten, C.A. van den Berg, A.P.J.M. Siebes, Thieme C.J.,and van der Voort M.H. The Goblin Database Programming Lan-guage. Technical Report CS-R9407, CWI, november 1993.[LC86] H. Lu and M. J. Carey. Load balanced task allocation in locally dis-tributed computer systems. In Proceedings of the 1986 conferenceon parallel processing, pages 1037{1039, 1986.[LC87] Tobin J. Lehman and Michael J. Carey. A Recovery Algorithmfor a High-Performance Memory-Resident Database System. InProceedings of the 1987 SIGMOD conference, 1987.[Loh89] G.M. Lohman. Is query optimization a 'solved' problem ? Com-puter Science technical report 89-005, Oregon Graduate Center,Beaverton, OR, 1989.[LR88] M.D. Palmer Leland and W.D. Roome. The Silicon Database Ma-chine: Rationale, Design, and Results. In Database Machines andKnowledge Base Machines, pages 311{324, 1988.[LSL92] T.J. Lehman, E.J. Shekita, and Cabrera L.F. An Evaluation ofStarburst's Memory Resident Storage Component. IEEE Jour-nal on Data and Knowledge Engineering, 4(6):555{567, December1992.[Mur89] M.C. Murphy. E�ective resource utilization for multiprocessor joinexecution. In Proceedings of the 15th International Conference onVery Large Data Bases, pages 67{75, 1989.[MvRT+90] S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse,and H. van Staveren. Amoeba: A distributed operating system forthe 1990s. Computer, 23(5):44{53, 1990.[Ngu81] G.T. Nguyen. Distributed query management for a local network.In Proceedings of the 2nd International Conference on DistributedComputing Systems, pages 188{196, 1981. Paris, France.[Oll71] T.W. Olle. Feature Analysis of Generalized Database ManagementSystems. Communications of the ACM, 14(5), May 1971.[OV92] Tamer M �Ozsu and Patrick Valduriez. Principles of DistributedDatabases. Prentice-Hall, 1992.

BIBLIOGRAPHY 163[Pag92] J. Page. Proc. of the 10th British National Conference onDatabases, volume 618 of Lecture Notes in Computer Science, chap-ter A study of a Parallel Database Machine and its Performance- The NCR/Teradata DBC/1012, pages 113{137. Springer-Verlag,July 6-8 1992. Aberdeen, Scotland.[PMC+90] H. Pirahesh, C. Mohan, J. Cheng, T.S. Liu, and P. Selinger. Par-allelism in relational database systems: Architectural issues anddesign approaches. In Proc. of the 2nd International Symposiumon Databases in Parallel and Distributed Systems, pages 4{29, July1990. Dublin.[SAC+79] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, andT.G. Price. Access path selection in a relational database manage-ment system. In Proc. ACM SIGMOD Int. Conf. on Managementof Data, pages 23{34, May 1979. Boston, Ma.[SD89] D. A. Schneider and D.J. DeWitt. A performance evaluation offour parallel join algorithms in a shared-nothing multiprocessor en-vironment. In Proc. of the 1989 ACM SIGMOD conference, pages110{122, June 1989. Portland, Oregon.[SKPO88] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout. TheDesign of XPRS. In Proceedings of the 14th International Confer-ence on Very Large Data Bases, pages 318{330, August 1988. LosAngeles, CA.[SRH90] M. Stonebraker, L. Rowe, and M. Hirohama. The Implementationof POSTGRES. IEEE Journal on Data and Knowledge Engineer-ing, 2(1):125{142, March 1990.[ST89] S. Salza and M. Terranova. Evaluating the size of queries on rela-tional databases with non uniform distribution and stochastic de-pendence. In Proc. of the 1989 ACM SIGMOD conference, pages8{14, 1989. Portland, Oregon.[Tee93] W.B. Teeuw. Parallel Management of Complex Objects: The designand implementation of a Complex Object Server for Amoeba. PhDthesis, Twente University, 1993.[TF82] T.J. Teorey and J.P. Fry. Design of Database Structures. PrenticeHall, 1982.[TN91] M. Tsangaris and J. Naughton. A stochastical approach for clus-tering in object bases. SIGMOD Records, May 1991.[Ull89] J. D. Ullman. Principles of Database and Knowledge Base Systems,volume II. Computer Science Press, 1989.[Val87] P. Valduriez. Join indices. TODS, 12(2):218{246, 1987.

164 BIBLIOGRAPHY[VBD89] F. Velez, G. Bernard, and V. Darnis. The O2 Object Manager: anOverview. In Proceedings of the 15th International Conference onVery Large Data Bases, pages 357{366, August 1989. Amsterdam.[vdBK90] C.A. van den Berg and M.L. Kersten. Logging and Recovery inPRISMA, pages 229{241. Lecture Notes in Computer Science 503.Springer-Verlag, September 1990.[vdBKSA91] C. A. van den Berg, M.L. Kersten, and S. Shair-Ali. Dynamic par-allel query processing. Technical Report CS-R9112, CWI, February1991.[vdBvD93] C.A. van den Berg and F. van Dijk. DBO implementation options:data base requirements for Multi-Media support. MADE ReportT/DBO-eval/S.2, CWI, 1993.[vK93] E. van Kuijk. Semantic Query Optimization in DistributedDatabase Systems. PhD thesis, Twente University, 1993.[VKC86] P. Valduriez, S. Khosha�an, and G. Copeland. Implementationtechniques of complex objects. In Proceedings of the Twelfth In-ternational Conference on Very Large Data Bases, pages 101{109,August 1986. Kyoto.[WA91] A.N. Wilschut and P.M.G Apers. Data
ow Query Execution in aParallel Main-Memory Environment. In Proceedings of the FirstInternational conference on Parallel and Distributed InformationSystems, pages 68{77, 1991. Miami Beach, Florida.[WFA92] A.N. Wilschut, J. Flokstra, and P.M.G. Apers. Parallelism in amain-memory system: The performance of PRISMA/DB. In Pro-ceedings of the 18th International Conference on Very Large DataBases, 1992. Vancouver, Canada.[WG89] A. Wilschut and P. Grefen. XRA de�nition. PRISMA documentP465, Twente University, September 1989.[Wie83] G. Wiederhold. Database Design. McGraw-Hill, 1983.[Wil93] A. Wilschut. Parallel Query Execution in a Main MemoryDatabase System. PhD thesis, Twente University, 1993.[WT90] P. Watson and Townsend. The EDS Parallel Relational DatabaseSystem, pages 149{166. Lecture Notes in Computer Science 503.Springer-Verlag, September 1990. Noordwijk, The Netherlands.[WY76] E. Wong and K. Yousse�. Decomposition- a strategy for queryprocessing. ACM Transactions on Data base Systems, 1(3):223{241, 1976.

Index4GL, 10mark, 121nested relations, 30segments, 28tombstones, 31ADABAS, 32adaptive storage, 46ADT, 19Allocator, 63Amoeba, 135application interface, 10applicationsGIS, 2multi-media, 2associative join processing, 86attribute nodes, 119basic block count, 111BAT, 44adaptive storage, 46BID, 49implementation, 46memory layout, 47relational operations, 45transaction management, 46unique identi�er, 49BAT Bu�er Manager, 48Bat Bu�er Manager, 128Batch task generation, 78BBM, 48Binary Association Tables, 44binary relation, 35binding list, 22, 65boolean term, 71Bubba, 2

bu�er management, 136Bu�er Manager, 60bu�er miss ratio, 110bu�er replacement, 48, 61, 107bu�er volume, 105BUN, 45cardinality, 131CAT, 40Chinese Postman Problem, 75choose-plan operator, 53class, 16extent, 16hierarchy, 17inheritance, 17object factory approach, 17object taxonomy approach, 17speci�cation, 16Class Administration Tables, 40class constraint, 21clustering, 29collision list, 137communication cost, 136commutative operation, 88complex objects, 16constant nodes, 119cost function, 119cost model, 6CPP, 76CPP path, 77data availability, 4data layer, 39data model, 16data parallism, 3data partitioning, 3dynamic, 3165

166 INDEXdata placement, 3data replication, 4data skew, 6, 59, 87data step, 53, 54DBMSmain-memory, 2object-oriented, 2parallel, 1DBPL, 10decision procedure, 57declustering, 3, 29decomposed storage model, 35decomposition, 53derived class, 22, 65direct storage model, 32directory, 28distinguished nodes, 116distributive property, 89DQP, 7, 51DSM, 35, 45duplicate elimination, 18dynamic partitioning, 3Dynamic Query Evaluation Plans,57dynamic query optimization, 88, 116,130, 133, 138associative operations, 89commutative operations, 88distributative operations, 89selection and projection, 90semantic properties, 90Dynamic Query Processing, 7dynamic query processing, 51, 86architecture, 51data step, 54decomposition, 53granularity, 52load balancing, 57query monitoring, 55query optimization, 57query restart, 55threshold technique, 53edge assignment, 119EDS, 2e�ective parallelism, 101elimination factor, 91

embedded queries, 10Exodus, 10extensible data-base systems, 11FGCS, 103
attened storage model, 32fragment cardinality, 141fragment data, 41fragment size, 92fragmentationhash-based, 41range-based, 41Fragmentation rules, 41FSM, 32Galileo, 10Gamma, 2GemStone, 10Generator, 62Goblin, 9language, 15Goblin DBPLapplication interface, 25base types, 19class constraint, 21class speci�cation, 20derived class, 22dynamic classi�cation, 20inheritance, 21ISA, 21methods and functions, 21, 23object creation, 25query speci�cation, 22statements and expressions, 24type constructors, 19type generalization, 20type specialization, 20types and subtypes, 19Goblin designadaptiveness, 12application domain, 10language, 11main-memory, 12operating system support, 13technological trends, 12Goblin kernel, 136communication cost, 136join cost, 137

INDEX 167processing cost, 137selection cost, 138Goblin query processing, 56, 59Allocator, 101architecture, 60Bu�er Manager, 60derived class, 65fragment allocation, 61Generator, 72load balancing, 63Optimizer, 86partitioning degree, 56partitioning method, 56performance evaluation, 135query decomposition, 64query graph, 68query optimization, 62Query Processor, 62query result representation, 65Query Scheduler, 62query translation, 67summary query evaluation, 62task evaluation, 62, 115Goblin storage model, 38access path, 40BAT, 44CAT, 40data layer, 44declustering, 39, 40fragment allocation, 61fragment storage, 39, 44hash partitioning, 44indexing, 39, 40partitioning, 40persistency, 39, 48range partitioning, 43RAT, 42relational operations, 43replication, 49schema representation, 39, 40summary data base, 40, 42transaction failure causes, 49Goldrush, 2granularity, 52, 101graph reduction, 116, 120hash phase, 88

hash-based fragmentation, 41head attribute, 44heuristics rules, 117horizontal fragmentation, 3, 41hyper-graph, 116I/O bottleneck, 29, 102impedance mismatch, 2, 10inclusion inheritance, 17INGRESS, 116intermediate results, 133internal nodes, 119join cost, 137join order, 87join selectivity, 132join term, 70join-index graph, 77joinABprime, 149load balancing, 4, 53, 56, 101, 108load distribution, 60locality, 104locality principle, 107logical optimization phase, 6LRU bu�er replacement, 107Mail example query, 68main-memorypersistency, 48main-memory approach, 1mark, 45, 79Maximum Cache Hit, 107MaximumCache Hit task allocation,109Maximum Cache Volume, 107MCH, 107MCV, 107MCV replacement, 108memory layout, 47MIMD, 12minimum response time, 148navigational task generation, 82network load, 136NF2, 30Normal distribution, 94normalized storage model, 34

168 INDEXNSM, 34OASIS, 32object, 16attributes, 16behavior, 16equality, 18methods, 16state, 16object attributes, 16object identi�er, 119object identity, 16object methods, 16one-copy-serializability, 49Ontos, 10OODBMS, 2application interface, 10, 18, 25concepts, 15extensibility, 11Goblin, 9object representation, 27object storage model, 27ODMG datamodel, 2schema design, 16standardization, 2workload, 31operator tree, 6optimal bu�er management, 104optimization heuristic, 116optimization rule, 87Optimizer, 62ordinality, 131P-DSM, 37P-NSM, 37page manager, 104parallel bottom-up evaluation, 96parallel disks, 29parallel query optimization, 6parallel query processing, 2data availability, 4data parallelism, 3data placement, 3data replication, 4dynamic, 7load balancing, 4pipeline parallelism , 4program parallelism, 4

static, 6sub-query allocation, 4parallelization phase, 6partitioning, 40fragment allocation, 42, 46fragment data, 41fragmentation rule, 41hash-based, 41query optimization, 40range-based, 41reconstruction rule, 41summary relation, 41partitioning degree, 3, 92, 141partitions, 28path expression, 66, 69path-expression, 24performance evaluation, 135minimum response time, 148partitioning overhead, 147task evaluation, 144task generation, 143Wisconsin benchmark, 149physical database design, 27physical representation, 27pipeline parallelism, 4pivot attribute, 78, 119pivot graph, 119pivot node, 119pivot phase, 80pivot relation, 78, 79pivot relations, 119placement trees, 30PRISMA, 2private objects, 18probability distribution, 92probe phase, 88program parallelism, 4project-select-join, 116projection attributes, 69, 119QEP, 6QP, 62QUEL, 116queryparallelization, 89query complexity, 59query decomposition, 4

INDEX 169query evaluation plan, 6, 51Query Evaluator, 51query execution phase, 6query graph, 68, 73query optimization, 56query process, 4cost model, 6execution, 6logical optimization, 6optimization, 6parallelization, 6query evaluation plan, 6query translation, 4Query Processor, 62Query Scheduler, 51query scheduler, 6query step, 53Query translation, 67query translation, 4RAID, 29random replacement, 107random task allocation, 109range-based fragmentation, 41RAT, 42read-one-write-all-available, 49reconstruction rule, 41records, 28Redistribution Administration Tables,42relative bu�er size, 110remark, 45replica control algorithm, 4response time, 136restriction term, 70ROWA, 49run-time optimization, 53, 87schema layer, 39, 40select-project-join query, 68selection condition, 66selection cost, 138semantic properties, 90semi-join, 45sequential evaluation, 95sequential task allocation, 109SGI/Indigo, 135shared objects, 30

election strategy, 30replication strategy, 30single node, 119SPJ, 68SQP, 6, 51Starburst, 31Static Query Processing, 6static query processing, 51storage layer, 39storage model, 28, 32clustering, 29declustering, 29directory, 28DSM, 35fragment storage, 44FSM, 32I/O bottleneck, 29main-memory, 29NSM, 34object evolution, 30object sharing, 30partition, 28record, 28schema representation, 39segment, 28surrogate, 28sub-graph, 119summary data base, 41summary database, 72summary graph, 83summary layer, 39, 40summary query, 73algorithm, 75batch algorithm, 78join index graph, 77navigational algorithm, 82query graph, 73relational operations, 73renumbering, 79result construction, 80result representation, 73, 78summary query cost, 144, 150summary relation, 43, 73relational operations, 43surrogates, 28tail attribute, 44

170 INDEXTandem's NonStopSQL, 2target edge, 117, 120target edge selection, 130target nodes, 121target type, 21task allocation, 61, 101, 108, 136allocation overhead, 111bu�er miss ratio, 110bu�er replacement, 103, 107bu�er volume, 104cost model, 102I/O bottleneck, 102LRU bu�er replacement, 107MCH task allocation, 109MCV bu�er replacement, 108optimal bu�ering, 104performance evaluation, 110random bu�er replacement, 107random task allocation, 109sequential task allocation, 109task elimination, 86, 91cost model, 97e�ectiveness, 97elimination factor, 94join order, 95parallel bottom-up evaluation,96partitioning degree, 92sequential evaluation, 95task evaluation, 115cost based optimization, 118cost model, 130data model optimization, 133equi-join reduction, 125execution, 128graph reduction, 120initialization, 120, 128intermediate results, 118, 133query graph, 119query result representation, 118renumbering, 121selection reduction, 121target edge selection, 130theta-join reduction, 123task execution time, 146, 150task generation, 72batch algorithm, 78

navigational algorithm, 82task migration, 108task monitor, 62task simpli�cation, 90Teradata DBC/1012, 2transaction failure, 49two-level query-processing, 152typeatomic, 18constructors, 18objects versus values, 18uniform distribution, 93UoD, 16Wisconsin benchmark, 149summary query cost, 150task execution time, 150Wong-Yousse� algorithm, 116working set, 104, 107workload, 104XPRS, 57Zipf distribution, 94

SamenvattingSnel beschikbare en betrouwbare informatie wordt steeds belangrijker binnen hetbedrijfsleven en de overheid. Tevens ziet men dan dat de hoeveelheid gegevensdie bijgehouden wordt jaarlijks met 25 % groeit. Gegevensbanken vormen eenmiddel om onder deze omstandigheden toch aan de informatiebehoefte te vol-doen.Een belangrijk voordeel van een gegevensbank is dat men door middel vanzoekvragen ruwe gegevens kan combineren om zo 'verborgen' informatie af teleiden. Denk bijvoorbeeld aan de bestrijding van uitkeringsfraude door loonbe-lastinggegevens te koppelen aan uitkeringsgegevens.Naarmate de zoekvragen ingewikkelder worden en de hoeveelheid gegevensomvangrijker, is het voor een enkele computer niet mogelijk om een zoekvraagbinnen een aanvaardbare termijn op te lossen. Met een zogeheten 'parallellegegevensbank' waarbij verschillende computers samenwerken kan de verwer-kingstijd teruggebracht worden. In dit proefschrift wordt een nieuwe techniekonderzocht om de zoekvraag door een aantal computers te laten verwerken.In de gangbare aanpak wordt de zoekvraag opgedeeld in deelvragen en daarnaverdeeld over de beschikbare computers. Het resultaat van een deelvraag wordtdoorgestuurd naar een andere computer en gebruikt in de oplossing van zijndeelvraag. Zodoende wordt het resultaat van de zoekvraag als het ware aaneen lopende band geconstrueerd. De centrale problemen in deze aanpak zijnde opdeling van de zoekvraag in deelvragen en de toekenning van de totalehoeveelheid werk over de beschikbare computers, zodanig dat de deelvragenbinnen dezelfde termijn opgelost worden. Hiervoor moet de duur voor iederedeelvraag bepaald worden en rekening gehouden worden met de belasting vaniedere computer. Helaas is het onmogelijk om deze factoren voorafgaand aan deverwerking precies te bepalen, zodat niet volledig gebruik gemaakt wordt van detotale capaciteit van het computersysteem waardoor niet de minimaal mogelijkeduur bereikt wordt.In de voorgestelde aanpak worden de gegevens in stukken verdeeld zodat deoriginele zoekvraag kan worden opgelost door een groot aantal identieke deelvra-gen of taken uit te voeren op een gedeelte van de gegevensbank. Een centralecomponent construeert, co�ordineert en verdeelt deze taken tijdens de verwerking,rekening houdend met de belasting van iedere computer. Een voordeel van dezeaanpak is dat het niet nodig is om voorafgaand aan de verwerking een schattingte maken van de duur van iedere deelvraag, omdat de verdeling van het werk171

172 Samenvattingtijdens de verwerking nog aangepast kan worden. Deze techniek wordt dynamicquery processing genoemd.Echter, het dynamisch aanpassen van de verwerking aan de feitelijke werk-last kost extra tijd. In dit proefschrift proberen we voor deze nieuwe verwer-kingsmethode inzicht te krijgen in deze kosten. Bovendien worden nieuwe tech-nieken voorgesteld en geanalyseerd die de totale werklast terugbrengen gebruikmakend van de informatie in de gegevensbank.E�en van deze technieken is het zogenaamde \two-level query processing" waar-bij de zoekvraag op twee abstractieniveaus wordt verwerkt. De centrale com-ponent lost de zoekvraag op over een samenvatting van de opgeslagen gegevensen construeert aan de hand van het resultaat taken die parallel op de werkelijkegegevens worden uitgevoerd. Aan de hand van de informatie op de geabstra-heerde gegevens kan de centrale component bepalen welke zoekvragen uitein-delijk kunnen bijdragen aan het resultaat.Op basis van wiskundige analyses en simulaties van deelaspecten van deze \dy-namic query processing"-techniek is een parallel object-geori�enteerde gegevens-bank ontworpen en geimplementeerd. Uit metingen aan het geimplementeerdesysteem blijkt dat, ondanks de tijd die de centrale component nodig heeft voorde generatie van deelvragen, het systeem een zoekvraag binnen eenzelfde tijdkan beantwoorden als traditionele parallelle gegevensbanken. Dit is bemoedi-gend aangezien er in de implementatie nog vele verbeteringen aan te brengenzijn.Uit vervolgonderzoek zal de werkelijke kracht van het systeem moeten blijkenzodra er met meer ingewikkelde zoekvragen ge�experimenteerd gaat worden. Deverwachting is dat traditionele systemen bij het oplossen van deze zoekvragende beschikbare computers minder e�ectief kunnen gebruiken.

Curriculum VitaeCarel van den Berg was born in Bergen, North-Holland, The Netherlands onAugust 14, 1963. In 1975 he started secondary school at the Murmellius Gym-nasium in Alkmaar and passed his �nal exam gymnasium-� in 1981.He studied computer science at the University of Amsterdam and got his B.Sc.in 1984, and M.Sc. in 1986 with physics as subsidiary subject. He specializedin computer architecture with image processing as research subject and wrotehis M.Sc. thesis on the design and implementation of an e�cient image-memoryinterface for an array processor. \An image processing system using a meshconnected array of binary processors and bit/pixel accessible image memory".His advisors were Prof. Dr. L.O. Hertzberger and Dr. W. Duinker.After his graduation he joined the data-base research group of Dr. M.L. Ker-sten at the Centre for Mathematics and Computer Science (CWI) in Amster-dam to work on the PRISMA-project which is a joint research e�ort of industry(Philips), dutch academia, and the CWI on the design and implementation ofa parallel main memory relational database machine using a parallel object ori-ented language. His tasks were twofold: to participate in the design and imple-mentation of this system and to perform research on parallel data-base machines.This e�ort resulted in a prototype implementation and a number of internationalpublications. Furthermore, it triggered the conception of the research subjectof this thesis: dynamic query processing in a parallel object-oriented data-basesystem.In the fall of 1990 he was assigned to the SION project \Star�sh" and startedhis Ph.D. research. In this project the University of Amsterdam, Free Univer-sity, Twente University and the CWI cooperate to develop applications for adistributed operating system (Amoeba). In this project he concentrated on thedesign and development of a query processing architecture and data representa-tion for a parallel object-oriented database system.Currently, he continues his research on dynamic query processing and takespart in the Esprit project \MADE" to investigate data-base support for multi-media applications.
173

